Advanced Planning Report

for Vestavia Hills Traffic Operations APPLE Study (Phase 1) RPC Project No. 1289.32

Prepared for Regional Planning Commission of Greater Birmingham

June 17, 2019

ADMONITION

This document is exempt from open records, discovery or admission under Alabama Law and 23 U.S.C. §§ 148(h)(4) and 409). The collection of safety data is encouraged to actively address safety issues on regional, local, and site specific levels. Congress has laws, 23 U.S.C. § 148(h)(4) and 23 U.S.C. § 409 which prohibit the production under open records and the discovery or admission of crash and safety data from being admitted into evidence in a Federal or state court proceeding. This document contains text, charts, tables, graphs, lists, and diagrams for the purpose of identifying and evaluating safety enhancements in this region. These materials are protected under 23 U.S.C. § 409 and 23 U.S.C. § 148(h)(4). In addition, the Supreme Court in *Ex parte Alabama Dept. of Trans.*, 757 So. 2d 371 (Ala. 1999) found that these are sensitive materials exempt from the Alabama Open Records Act.

Table of Contents

1	Int	roduction1
	1.1	Purpose and Need of the Study1
	1.2	Study Approach2
	1.3	Background Information2
2	Tro	affic Analysis and Recommendations
	2.1	Rocky Ridge Road at Dolly Ridge Road3
	2.2	Sicard Hollow Road at Blue Lake Drive/Cahaba Heights Road7
	2.3	Rocky Ridge Road at Shades Crest Road and US-28013
	2.4	US-31 at Shades Crest Road17
	2.5	US-31 at Columbiana Road/I-65 Northbound Ramps
	2.6	Columbiana Road at Shades Crest Road/Vestaview Lane
	2.7	US-31 at Vestavia Plaza/City Hall
	2.8	US-31 at Pizitz Drive/Vestavia Forest Place
	2.9	Dolly Ridge Road at Gresham Drive
3	Сс	ost Estimates
4	Fυ	nding Sources
5	Ne	ext Steps

Appendices

- Appendix A Raw Traffic Counts
- Appendix B Capacity Analysis Reports
- Appendix C Level of Service Description
- Appendix D Trip Generation Methodology
- Appendix E Base Signal Timings
- Appendix F Signal Warrant Analysis Reports
- Appendix G CARS Reports
- Appendix H Previous Study Recommendations at US-31 and Columbiana Road/I-65
- Northbound Ramps
- Appendix I Opinion of Probable Costs

List of Figures

Figure 1: Aerial Imagery of the Rocky Ridge Road at Dolly Ridge Road Intersection
Figure 2: View from the northeast corner of the Rocky Ridge Road at Dolly Ridge Road intersection
Figure 3: Intersection of Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road7
Figure 4: View from Sicard Hollow Road Looking Northbound along Cahaba Heights Road10
Figure 5: View from Sicard Hollow Road Looking Southbound along Blue Lake Drive10
Figure 6: Sicard Hollow Road at Blue Lake Drive Roundabout Concept12
Figure 7: Aerial View of US-280 at Rocky Ridge Road and Shades Crest Road13
Figure 8: View of US-280 Westbound Left Turn Signal Heads14
Figure 9: Looking north at the intersection of US-31 at Shades Crest Road17
Figure 10: Looking Eastbound from the Shades Crest Road approach to US-31
Figure 11: Aerial View of US-31 at Shades Crest Road18
Figure 12: View of Columbiana Road Right Turn Condition onto US-31 Southbound22
Figure 13: US-31 at Columbiana Road Concept
Figure 14: Aerial View of Columbiana Road at Shades Crest Road/Vestaview Lane25
Figure 15: Columbiana Road at Shades Crest Road/Vestaview Lane Concept
Figure 16: US-31 at Vestavia Plaza/City Hall
Figure 17: US-31 at Vestavia Plaza/City Hall Concept
Figure 18: US-31 and Pizitz Drive/Vestavia Forest Place
Figure 19: Aerial View of US-31 and Pizitz Drive/Vestavia Forest Place
Figure 20: US-31 at Pizitz Drive/Vestavia Forest Place Concept
Figure 21: Aerial View of Dolly Ridge Road at Gresham Drive
Figure 22: Concept for Restriping Dolly Ridge Road just south of Gresham Drive41

List of Tables

Table 1: Vestavia Hills City School District Facility Enrollment Before and After Redistricting2
Table 2: Existing Lane Group LOS at Rocky Ridge Road and Dolly Ridge Road (2019)4
Table 3: Net Added Volume from Trip Generation4
Table 4: Lane Group LOS with Trip Generation Volumes Added (2019)5
Table 5: Lane Group LOS with Short Term Recommendations Implemented (2019)
Table 6: Lane Group LOS with Short Term and Long Term Recommendations Implemented (2019)
Table 7: Existing Lane Group LOS at Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road (2019)
Table 8: Lane Group LOS with Signalization (2019)
Table 9: Proposed Roundabout LOS at Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road
Table 10: Intersection Sight Distance Summary-Sicard Hollow Road & Blue Lake Drive/CahabaHeights Road
Table 11: Existing Lane Group LOS at US-280 and Rocky Ridge Road (2019)15
Table 12: Lane Group LOS at US-280 and Rocky Ridge Road with All Improvements (2019)16
Table 13: Existing Lane Group LOS at US-31 and Shades Crest Road (2019)19
Table 14: Lane Group LOS at US-31 and Shades Crest Road with All Improvements (2019)20
Table 15: Existing Lane Group LOS at US-31 and Columbiana Road/I-65 Northbound Ramps (2019)
Table 16: Existing Lane Group LOS at Columbiana Road and Shades Crest Road/Vestaview Lane (2019)
Table 17: Existing Lane Group LOS at Columbiana Road and Shades Crest Road (2019)26
Table 18: Lane Group LOS at Columbiana Road and Shades Crest Road/Vestaview Lane with AllImprovements (2019)
Table 19: Lane Group LOS at Columbiana Road and Shades Crest Road with All Improvements(2019)
Table 20: Existing Signal Timing Plans and Splits at US-31 and Vestavia Plaza
Table 21: Existing Signal Timing Plans and Splits at US-31 and Pizitz Drive/Vestavia Forest Place34
Table 22: Existing Lane Group LOS with Trip Generation at Dolly Ridge Road and Gresham Drive(2019)
Table 23: Net Added Volume by Trip Generation
Table 24: Lane Group LOS at Dolly Ridge Road and Gresham Drive with Improvements (2019)40
Table 25: Summary of Opinion of Probable Costs in Year 2019 Dollars 42
Table 26: Funding Options

1 Introduction

This study was initiated by the City of Vestavia Hills through the Advanced Planning, Programming, and Logical Engineering (APPLE) program developed by the Regional Planning Commission of Greater Birmingham (RPCGB). The City requested professional planning assistance in evaluating traffic operations at several intersections within the City. The study involves the following nine (9) intersections:

- 1. Rocky Ridge Road at Dolly Ridge Road
- 2. Sicard Hollow Road at Blue Lake Drive/Cahaba Heights Road
- 3. Rocky Ridge Road at US-280
- 4. US-31 at Shades Crest Road
- 5. US-31 at Columbiana Road/I-65 Northbound Ramps
- 6. Columbiana Road at Shades Crest Road/Vestaview Lane
- 7. US-31 at Vestavia Plaza/City Hall
- 8. US-31 at Pizitz Drive/Vestavia Forest Place
- 9. Dolly Ridge Road at Gresham Drive

1.1 Purpose and Need of the Study

This study was undertaken to assess traffic operational improvements at several intersections in and around the City, specifically stemming from user complaints and the redistricting of several schools within the district. This document summarizes the following topics:

- Existing transportation system operational conditions and deficiencies,
- The process used to identify potential alternatives for improvement,
- The resulting alternatives that were developed from that process, and
- An evaluation of potential positive and negative impacts to the area and adjacent properties that may be associated with each improvement.

The purpose of this study is to identify feasible improvements and their potential impacts. If the City chooses to move forward with an improvement project, a more detailed Environmental Planning Study would be required for federally funded projects; however, the City may also fund any improvements in order to achieve a quicker timeline.

Some of the intersections included in this study need improvements to accommodate adjusted traffic demands and pedestrian access as a result of the redistricting of schools within the City. For these intersections, this study is specifically geared towards identifying improvements that can be implemented with an accelerated timeline before the school redistricting takes effect for the 2019-2020 school year. Long term

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

improvements were identified at various locations to provide additional context for daily traffic operations at the intersections.

1.2 Study Approach

This study involves an evaluation of the existing conditions and constraints of several intersections selected by the City to be a part of the study. Existing traffic data was collected and a capacity analysis of the existing conditions was prepared. All information was compiled and evaluated to define the needs of each intersection and identify constraints and opportunities for improvement. Field reviews were performed that consisted of observing peak hour traffic patterns and investigating the impacts of various improvement options.

Recommendations were developed and evaluated relative to their ability to address the purpose and need for the project. Recommendations for each intersection are included within its respective subsection of this report.

1.3 Background Information

The most influential driver of the purpose and need for this project is the redistricting of several city schools. Table 1 outlines the changes in school facility enrollment and capacity as estimated by Vestavia Hills City School District.

		und Aner Keur	U.S. C.S. C.S. C.S. C.S. C.S. C.S. C.S.			
School	Current Grades	Enrollment	Capacity	New Grades	New Enrollment	New Capacity
East	K - 3 rd	770	779	$K - 5^{th}$	774	836
West	K - 3 rd	752	798	$K - 5^{th}$	769	874
Central	4 th - 5 th	769	646	None	None	None
Gresham/ Dolly Ridge	None	None	None	K – 5 th	735	836
Cahaba Heights	K - 5 th	429	437	K – 5 th	491	570
Liberty Park Elementary	K - 5 th	589	779	K – 5 th	613	779
Liberty Park Middle	6 th - 8 th	482	798	$6^{th} - 8^{th}$	479	798
Pizitz	6 th - 8 th	1149	1026	9 th	510*	1026**
Berry	None	None	None	6 th – 8 th	1199	1300

Table 1: Vestavia Hills City School District Facility Enrollment Before and After Redistricting

Source: Vestavia Hills City Schools Annual Reports 2013-2018 (www.vestavia.k12.al.us) *Estimated based on 2017-2018 Vestavia Hills High School total enrollment

**Assumed previous Pizitz campus capacity would remain the same as 2017-2018

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2 Traffic Analysis and Recommendations

Stakeholder input resulted in the following intersections and any specified focus areas associated with each location. Each subsection contains an operations analysis of the existing conditions for the year 2019 and recommendations for mitigating operational deficiencies. Traffic counts are included in Appendix A, and capacity analysis reports from Trafficware's Synchro 10 software are included in Appendix B.

In the Highway Capacity Manual (2016), published by the Transportation Research Board, traffic capacities are expressed as levels of service (LOS) ranging from "A" to "F". A detailed description of each level of service designation is included in Appendix C. Generally, LOS "C" is considered desirable, while LOS "D" is considered acceptable during peak hours of traffic flow.

2.1 Rocky Ridge Road at Dolly Ridge Road

Rocky Ridge Road is classified as a two-lane minor arterial with a speed limit of 35 MPH, and Dolly Ridge Road is classified as a two-lane major collector. The intersection is signalized and operates currently as a two-phase cycle running free at all times. Figure 1 displays aerial imagery of the intersection. Traffic counts were collected by Jefferson County on Tuesday, January 15, 2019, from 6:00 AM to 8:00 AM, 2:00 PM to 3:00 PM, and 4:30 PM to 6:00 PM. Analysis completed by Jefferson County and Sain Associates included a Synchro capacity analysis, trip generation estimates for added school traffic, and crash data analysis. According to the City, plans are in place to install sidewalks in the vicinity of the intersection. These plans were considered when making recommendations.

Figure 1: Aerial Imagery of the Rocky Ridge Road at Dolly Ridge Road Intersection

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Analysis

Rocky Ridge Road is a heavily utilized roadway for commuters accessing US-280 and schools. Dolly Ridge Road connects Rocky Ridge Road on the western end to Cahaba River Road on the eastern end. Both Rocky Ridge Road approaches have left turn lanes. The trip generating land parcels that feed the eastbound approach to this intersection are fully built-out. The west leg of Dolly Ridge Road provides access to a CVS, a veterinarian office, an assisted-living facility, and a moderately-sized residential neighborhood. With its close proximity to Vestavia Hills High School and the new Dolly Ridge Elementary, the intersection is expected to be noticeably affected by the redistricting of schools. Table 2 displays the current level of service for each lane group. The numbers shown in parentheses indicate each lane group's delay per vehicle in seconds.

	AM LOS		School PM LOS		PM LOS		
Approach	Left	Through/ Right	Left	Through/ Right	Left	Through/ Right	
Rocky Ridge Road – Northbound	A (5.7)	C (22.2)	A (5.6)	A (7.0)	A (7.3)	A (9.4)	
Rocky Ridge Road – Southbound	D (41.5)	A (7.9)	A (6.8)	B (10.2)	A (9.1)	B (15.5)	
Dolly Ridge Road – Eastbound	B (19.9)		B (14.5)		B (18.3)		
Dolly Ridge Road – Westbound	D (3	D (35.7)		B (19.3)		C (25.6)	

Table 2: Existing Lane Group LOS at Rocky Ridge Road and Dolly Ridge Road (2019)

Table 3 shows the estimated additional trips induced by the opening of Dolly Ridge Elementary. Trip generation was completed based on turning movement counts from an existing Vestavia Hills elementary school and distributed by a shortest-path analysis using GIS software. Since Vestavia Hills does not employ a typical bus system, the *ITE Trip Generation Manual* trip rates for elementary schools (LUC 520) is not appropriate for this scenario. Further details of the trip generation methodology used in this study can be found in Section 2.9 and Appendix D. Table 4 contains the peak hour capacity analysis with the estimated added volume from the trip generation.

Table 3: Net	Added Volume from Trip Gener	ation
	Net Added AM Trips	Not Adda

Approach	Net	Added AM	Trips	Net Added School PM Trips			
Approach	Left	Through	Right	Left	Through	Right	
Rocky Ridge Road – Northbound	0	0	302	0	0	82	
Rocky Ridge Road – Southbound	154	0	0	137	0	0	
Dolly Ridge Road – Eastbound	0	5	0	0	16	0	
Dolly Ridge Road – Westbound	119	2	196	139	19	146	

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Table 4: Lane Gloup Los with the Generation volumes Added (2017)							
	AM LOS		School PM LOS		PM** LOS		
Approach	Left	Through/ Right	Left	Through/ Right	Left	Through/ Right	
Rocky Ridge Road – Northbound	A (6.2)	F (122.7)	A (7.6)	B (11.2)	A (7.3)	A (9.4)	
Rocky Ridge Road – Southbound	F (>300)*	A (8.6)	D (38.8)	B (16.9)	A (9.1)	B (15.5)	
Dolly Ridge Road – Eastbound	C (2	21.2)	В (17.4)	В (18.3)	
Dolly Ridge Road – Westbound	F (>	300)*	F (8	39.5)	С (25.6)	

Table 4: Lane Group LOS with Trip Generation Volumes Added (201	9)
---	----

*Computed delay in seconds exceeds a meaningful value

**School trip generation estimates do not affect PM LOS, only AM and School PM LOS.

The crash data analysis included ten (10) crashes from 2016 through 2018. 40% of crashes involved angle collisions, and an additional 40% of the crashes were sideswipe crashes. There were two safety issues observed at this intersection that could be contributing to angle or sideswipe crashes. First, the diagonal span-wire arrangement leads to poor signal head visibility for drivers as they enter the intersection. This is especially true for drivers attempting to make a permissive left turn from either Rocky Ridge Road approach. Second, the access point density in the segment just north of the intersection on Rocky Ridge Road is unnecessarily high. The potential for drivers to use the access points as cut-throughs during peak hours is high, which presents a safety issue for gas station customers walking to and from the gas pumps. One access is striped as a right-in, right-out configuration, which is generally less effective at preventing incorrect movements than raised channelizing islands. Figure 2 shows a view of the intersection, its span-wire arrangement, and the right-in, right-out access point to the gas station.

Figure 2: View from the northeast corner of the Rocky Ridge Road at Dolly Ridge Road intersection

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama Page 5

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Recommendations

Considering the added volumes and the existing operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- 1. Add a left turn phase for the Rocky Ridge Road northbound and southbound approaches. A flashing yellow arrow (FYA) signal head arrangement is recommended for both protected-permissive left turn conditions. Base signal timings with the added phase are included in Appendix E. The timings should be monitored after school begins, and any necessary adjustments should be made.
- 2. In conjunction with adding left turn phases, the existing span-wire arrangement should be converted to a box arrangement. Long term recommendations below should be considered in the placement of any new signal poles.
- 3. Include pedestrian timings, signal heads, and crosswalks in accordance with the plans for sidewalks in the area.
- 4. Install a raised channelizing island at the right-in, right-out gas station driveway along Rocky Ridge Road just north of the intersection.

Long Term Recommendations:

5. Install right turn lanes on the Rocky Ridge Road northbound and Dolly Ridge Road westbound approaches. Both turn lanes should be as long as feasible to ensure effectiveness in improving traffic operations at the intersection.

Table 5 shows the capacity analysis results when accounting for short term recommendations (no turn lane additions) and added volumes from trip generation. Table 6 shows the capacity analysis results when accounting for both short term and long term recommendations and added volumes from trip generation. Inclusion of pedestrian phases will impact levels of service for other movements.

	AM LOS		Schoo	I PM LOS	PM LOS	
Approach	Left	Through/ Right	Left	Through/ Right	Left	Through/ Right
Rocky Ridge Road – Northbound	A (9.7) F (258.9)		B (10.5)	D (43.5)	A (3.6)	B (16.3)
Rocky Ridge Road – Southbound	F (211.9)	B (15.1)	D (29.6)	C (25.9)	A (4.6)	B (15.1)
Dolly Ridge Road – Eastbound	C (30.0)		B (16.6)		B (19.8)	
Dolly Ridge Road – Westbound	F (297.8)		D (52.3)		C (33.7)	

Table 5: Lane Group LOS with Short Term Recommendations Implemented (2019)

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Approach	AM LOS			School PM LOS			PM LOS		
Approach	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Rocky Ridge Road –	А	D	А	А	С	А	А	В	А
Northbound	(5.3)	(37.8)	(4.3)	(5.3)	(20.8)	(4.2)	(4.3)	(13.8)	(3.2)
Rocky Ridge Road –	cky Ridge Road – 🛛 F) E)	A P (177)			A D (12.4)		2 11
Southbound	(81.0)	A (9.5)		(8.4)	B (16.6)		(4.8)	B (13.4)	
Dolly Ridge Road –		C (26.5)					B (18.9)		
Eastbound		C (20.5)	B.5) B (16.0)				В (10.7)		
Dolly Ridge Road –	E (7	(71.2) C					CIC	07 01	А
Westbound	E (7	1.3)	(26.6)	D (39.0)		(5.6)	C (2	C (27.8)	

Table 6: Lane Group LOS with Short Term and Long Term Recommendations Implemented (2019)

2.2 Sicard Hollow Road at Blue Lake Drive/Cahaba Heights Road

Blue Lake Road and Sicard Hollow Road are both classified as two-lane major collectors with speed limits of 35 MPH. The intersection is unsignalized and has four legs. The intersection serves as a hub for access between three areas: Cahaba Heights, the Colonnade and Patchwork Farms, and Liberty Park. 24-hour turning movement counts were collected at this intersection on February 6, 2019. Analysis completed for this intersection includes a capacity analysis, a signal warrant, sight distance measurements, Curve Analysis Reporting Services (CARS) runs, and crash data analysis. No measurable impact to operations is expected due to school redistricting. The Cahaba Pump Station on the northeast quadrant of the intersection is a historic property, and several utility poles and markers exist in close proximity to the intersection. Figure 3 displays the view from the western leg of the intersection.

Figure 3: Intersection of Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is prepared solely for the purpose of identifying, evaluating, and planning

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Analysis

While the eight-hour volume warrant was not satisfied, the four-hour volume warrant was satisfied. The signal warrant analysis can be found in Appendix F. Intersections that do not meet the eight-hour volume warrant are typically not considered signal candidates by ALDOT. Though this is not an ALDOT-owned or maintained roadway, there are also stopping sight distance concerns associated with the installation of a signal at this location that increase the likelihood of more severe crashes. Additionally, the installation of a signal generally increases the number of rear end crashes at an intersection. There is no discernible growth trend in nearby historical traffic count data, but Sicard Hollow Road approach volumes would have to grow by at least 5% annually for the eight-hour warrant to be satisfied in five years.

Much of the queuing observed at this intersection was a result of several vehicles platooning behind a slower driver along Sicard Hollow Road. This type of arrival occurred several times during peak hour observations, but the queue processed fairly quickly each time. Considering the safety implications as well as the delay tradeoffs associated with signalization, it is not recommended that a signal be installed at this time. However, this intersection is an excellent candidate for a roundabout based on the need for acceptable levels of service, traffic calming measures, and the mitigation of insufficient intersection sight distance from Sicard Hollow Road. Table 7 shows the existing levels of service for each lane group at the intersection. Table 8 shows levels of service after signalization and the addition of a southbound left turn lane. The numbers shown in parentheses indicate the lane group delay per vehicle in seconds. Table 9 contains the levels of service for a roundabout at the intersection.

Approach (Existing Conditions)	AM LOS	PM LOS						
Approach (Existing Conditions)	Left/Through/Right	Left/Through/Right						
Blue Lake Drive – Northbound	A (0)	A (0)						
Cahaba Heights Road – Southbound	A (2.8)	A (3.9)						
Driveway – Eastbound	N/A	N/A						
Sicard Hollow Road – Westbound	F (>300)*	F (265.6)						

Table 7: Existing Lane Group LOS at Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road (2019)

*Computed delay in seconds exceeds a meaningful value

Table 6: Lane Gra)				
	AM	LOS	PM	LOS	
Approach (Signalized)	Left	Through/ Right	Left	Through/ Right	
Blue Lake Drive – Northbound	D (5	3.7)	В (1	8.6)	
Cahaba Heights Road – Southbound	B (16.9)	B (10.7)	A (8.9)	A (4.5)	
Driveway – Eastbound	N/A N		/Α		
Sicard Hollow Road – Westbound	F (117.8)		C (31.6)		

Table 8: Lane Group LOS with Signalization (2019)

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Type of Roundabout	Blue Drive	Lake – NB	Heig	aba ghts I – SB	Driveway – EB		Sicard Hollow Roundab Road – WB LOS			
	AM	ΡM	AM	ΡM	AM	ΡM	AM	РМ	AM	РМ
1-Lane by 1-Lane	В	В	А	А	В	В	E	А	С	В
1-Lane by 2-Lanes	А	В	А	А	А	А	В	А	Α	Α
2-Lanes by 1-Lane	А	А	А	А	А	А	С	А	В	Α
2-Lanes by 2-Lanes	А	А	А	А	Α	А	В	A	Α	Α

Table 9: Proposed Roundabout LOS at Sicard Hollow Road and Blue Lake Drive/Cahaba Heights Road

Sight distance measurements are documented in Table 10 below. Figures 4 and 5 show the view from the stop line at the Sicard Hollow Road approach.

Table 10: Intersection Sight Distance Summary-Sicard Hollow Road & Blue Lake Drive/Cahaba Heights Road

Approach – View Direction	Measured Intersection Sight Distance (ft)	Required Intersection Sight Distance* (ft)
Sicard Hollow Road – looking northbound	350	390
Sicard Hollow Road – looking southbound	305	390

*According to A Policy on Geometric Design of Highways and Streets (AASHTO 2011) for a 35 MPH facility.

There is limited curve warning signage along Blue Lake Drive and Cahaba Heights Road to encourage lower speeds and caution near the intersection of Sicard Hollow Road. Existing signage is in poor condition. To determine what advisory speeds should be in place for the curves near the intersection, CARS analysis was run on this stretch of roadway. All recommended curve advisory speeds were at or above the speed limit except for the Blue Lake Drive curve immediately south of the Sicard Hollow Road intersection. CARS analysis documentation can be found in Appendix G, and the appropriate signage is noted in the short term recommendations.

Crash data queries returned just two (2) crashes at the intersection itself. Three (3) additional crashes were analyzed, but their actual locations were north of the intersection of Sicard Hollow Road and Blue Lake Drive. Speed was a factor in at least 60% of the crashes, but no other conclusive trends can be established with this sample size.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 4: View from Sicard Hollow Road Looking Northbound along Cahaba Heights Road

Figure 5: View from Sicard Hollow Road Looking Southbound along Blue Lake Drive

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- 1. A Winding Road (W1-5) sign should be installed 100 feet prior to the group of curves along Blue Lake Drive northbound and southbound between Lakeside Drive and the I-459 overpass.
- 2. Install a combination horizontal alignment/intersection (W1-10e) sign with a Speed Advisory Plaque (W13-1P) at the beginning of the first curve in each direction along Blue Lake Drive/Cahaba Heights Road (northbound and southbound) before the Sicard Hollow Road intersection. In the northbound direction along Blue Lake Drive, the Speed Advisory Plaque (W13-1P) should be 25 MPH. In the southbound direction along Cahaba Heights Road, the Speed

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Advisory Plaque (W13-1P) should be 20 MPH. Ideally, solar-powered flashing beacons should be installed on these sign arrangements to improve visibility to drivers.

- 3. Install two (2) double-sided Chevron (W1-8) signs along the Blue Lake Drive curve immediately south of the intersection.
- 4. Trim vegetation on the southwestern quadrant of the intersection to improve intersection sight distance for Sicard Hollow Road drivers looking southbound.
- 5. Install gate-posted Stop Ahead (W3-1) signs approximately 100 feet from the stop line of the Sicard Hollow Road westbound approach.
- 6. Install lighting at the intersection to improve intersection visibility during nighttime conditions.

Long Term Recommendations:

7. Install a one-lane by one-lane roundabout at the intersection to calm traffic speeds, mitigate sight distance deficiencies, lessen the likelihood of high severity crashes, and improve average delays at the intersection for Sicard Hollow Road approaches. If a roundabout is installed, reevaluate the warning signage in the area prior to installation. Figure 6 shows a concept of the proposed roundabout.

Short term recommendations would not necessarily change the capacity analysis results from existing conditions, but in practice it would ease the execution of movements from the Sicard Hollow Road approach and improve visibility at the intersection and approaching the intersection. The installation of a roundabout is estimated to bring about the levels of service found in Table 9, based on the ALDOT Capacity Analysis for Planning of Roundabouts tool. This analysis tool uses methodology from the *Highway Capacity Manual* (6th Edition). After evaluating the different types of roundabouts and potential design constraints at this location, a one-lane by one-lane roundabout is the recommended configuration. The LOS E at Sicard Hollow Road westbound is a significant improvement over the LOS F registered by the existing intersection (Table 7) and a signalized intersection (Table 8).

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 6: Sicard Hollow Road at Blue Lake Drive Roundabout Concept

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.3 Rocky Ridge Road at Shades Crest Road and US-280

This junction serves to connect many Vestavia Hills neighborhoods to the US-280 corridor. Rocky Ridge Road and Shades Crest Road are both classified as two-lane minor arterials. US-280 is classified as a six-lane principal arterial with a speed limit of 55 MPH. The two signalized intersections are separated by approximately 300 feet. 24-hour turning movement counts were collected on February 6, 2019 at the intersection of Rocky Ridge Road and Shades Crest Road. Peak hour volumes from the US-280 at Rocky Ridge Road intersection were obtained through Skipper Consulting from November 2018.

Analysis performed at these intersections included a capacity analysis and crash data analysis. Figure 7 shows aerial imagery of the two intersections. Several utilities lie in close proximity to the roadway on the east side of Rocky Ridge Road, presenting challenges for any short-term widening of the Rocky Ridge Road northbound approach to US-280.

Figure 7: Aerial View of US-280 at Rocky Ridge Road and Shades Crest Road

Analysis

At the height of the AM peak hour, the queue for the Rocky Ridge Road northbound approach to US-280 extended over half of a mile back to Rocky Brook Drive. The Shades Crest Road eastbound phase was served twice per US-280 cycle, which led to drivers receiving a green light when there was no available space to occupy on Rocky Ridge Road northbound. The majority of Shades Crest Road eastbound drivers continue onto Rocky Ridge Road northbound to turn right onto US-280 eastbound.

In the southbound direction during the AM peak hour, Rocky Ridge Road never queued back to US-280. However, the offset between the two intersections caused issues in the PM peak with Rocky Ridge Road southbound queuing back onto US-280. As soon as the westbound left turn phase is serviced on US-280, the southbound phase for Rocky

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Ridge Road at Shades Crest Road turned red. Unfortunately, establishing an offset to employ at the Rocky Ridge Road and Shades Crest Road signal is not practical due to cycle lengths on the US-280 adaptive signal system varying throughout the day.

Another issue associated with the short distance between these intersections is that some drivers are unaware that one lane on Rocky Ridge Road southbound continues on Rocky Ridge Road and the other feeds onto Shades Crest Road westbound. This leads to drivers stopping between the two intersections to change lanes and increases the risk of traffic queuing back onto US-280. Existing directional signage along US-280 westbound prior to the left turn lane that illustrates the upcoming scenario is small and outside of the natural eyeline of the average driver. Figure 8 shows the view of the eastbound left turn phase signal heads.

Figure 8: View of US-280 Westbound Left Turn Signal Heads

There is a short concrete path connecting Rocky Ridge Road with the adjacent cul-desac on the south side of Rocky Ridge Road. There is a Bike Route sign on Rocky Ridge Road northbound a few feet prior to the path, however it is unclear what purpose the path is currently serving. There are safety concerns regarding the lack of guidance associated with this path, and there are no nearby destinations or existing infrastructure to support bicycles or pedestrians. If vehicles are queued on Rocky Ridge Road northbound, a cyclist or pedestrian exiting the path has no view of oncoming traffic.

Table 11 shows existing levels of service at the US-280 and Rocky Ridge Road intersection for each lane group. The numbers shown in parentheses indicate the lane group delay per vehicle in seconds. Though modeled contiguously in Synchro, the capacity analysis results (see Appendix B) for Shades Crest Road at Rocky Ridge Road were not indicative of the conditions observed in the field due to queue spillback from the US-280 and Rocky Ridge Road intersection.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is prepared solely for the purpose of identifying, evaluating, and plannin

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Approach		AM LOS		PM LOS			
Approach	Left	Thru	Right	Left	Thru	Right	
Rocky Ridge Road – Northbound	F (111.1)		E (58.7)	F (104.0)		E (67.3)	
US-280 – Eastbound		C (34.8)	A (8.2)		F (212.0)	B (9.0)	
US-280 – Westbound	F (116.8)	C (31.0)		F (116.4)	A (9.0)		

Table 11: Existing Lane Group LOS at US-280 and Rocky Ridge Road (2019)

Despite the satisfactory levels of service registered in the capacity analysis at the intersection of Shades Crest Road and Rocky Ridge Road, queue spillback from the US-280 at Rocky Ridge Road signal prevents the intersection from achieving these levels of service in the field. In other words, the signal at Rocky Ridge Road and Shades Crest Road would operate well if it wasn't in such close proximity to US-280. As a result, our recommendations promote the strategy of maximizing the use of limited space between the intersections to improve the overall efficiency of the system. Currently, the Shades Crest Road phase is set to Max Recall, which takes valuable green time away from Rocky Ridge Road traffic in the PM peak hour and increases the chances of traffic queuing back to US-280 along Rocky Ridge Road southbound.

Thirty nine (39) crashes were reported at the intersection of US-280 and Rocky Ridge Road from 2016 through 2018. The vast majority of crashes from this dataset were lowseverity, rear end collisions on the US-280 mainline. Approximately 90% of all crashes involved property damage only. Crash data queries returned zero (0) reported crashes at the intersection of Rocky Ridge Road at Shades Crest Road; however, City staff mentioned two recent crashes involving garbage trucks running straight through the intersection from the steep downgrade of Shades Crest Road's approach to Rocky Ridge Road. Advance warning signage on Shades Crest Road has since been installed to notify heavy vehicle drivers of the steep grade.

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- 1. Place signage on the south signal span wire facing US-280 westbound traffic that delineates the appropriate lane to occupy for each subsequent route once the left turn movement is made onto Rocky Ridge Road southbound. The inside left turn lane feeds Rocky Ridge Road southbound, while the outside left turn lane feeds Shades Crest Road.
- 2. At the intersection of Shades Crest Road and Rocky Ridge Road, turn off the Max Recall setting for the Shades Crest Road phase.
- 3. Extend the Rocky Ridge Road northbound right turn lane onto US-280 eastbound back to the Shades Crest Road intersection to give the right turn lane 275 feet of

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

storage length from the stop line at US-280 with an additional 100 feet of taper length. This would also require the extension of the outermost left turn lane by the same distance as the right turn lane.

4. Remove the path between Rocky Ridge Road and the adjacent cul-de-sac. There are no pedestrian or bicycle facilities nearby, and it is not within driver expectation to encounter either mode at this location.

Long Term Recommendations:

5. Upon turn lane extension, observe the signal performance at the Rocky Ridge Road and Shades Crest Road intersection and make adjustments to signal timings based on the altered traffic conditions.

Table 12 shows the levels of service for the lane groups at the intersection of US-280 and Rocky Ridge Road after taking into account the recommendations found above. Long cycle lengths on US-280 during peak hours lead to poor delay-related metrics, so the goal of the recommendations is to make the most of each phase. Queue spillback will remain an issue for the Rocky Ridge Road at Shades Crest Road intersection as long as it is a full access intersection, but allowing Shades Crest Road drivers to go directly to the right turn lane on Rocky Ridge Road northbound at US-280 will aid the efficiency of both intersections.

Approach		AM LOS	•	PM LOS			
Approach	Left	Thru	Right	Left	Thru	Right	
Rocky Ridge Road –	F (111.1)		B (15.1)	F (104.3)		E (65.8)	
Northbound							
US-280 – Eastbound		C (34.8)	A (8.2)		F (211.2)	B (16.8)	
US-280 – Westbound	F (116.8)	C (31.0)		F (116.4)	A (8.9)		

Table 12: Lane Group LOS at US-280 and Rocky Ridge Road with All Improvements (2019)

Though there is no major difference in the levels of service registered by Synchro due to turn lane lengthening, our peak hour observations at the intersections indicate that increasing turn lane lengths per the recommendations will increase capacity at the intersection by maximizing the number of vehicles that can be stored between US-280 and Shades Crest Road. Several other methods for signal coordination between the two intersections were evaluated, but we do not believe that they guarantee enough of an operational benefit to traffic conditions. Converting the two intersections to run on one signal controller may result in unacceptable inefficiency at the Shades Crest Road and Rocky Ridge Road intersection at all hours of the day. Attempting to hardwire the controller or detection of the US-280 and Rocky Ridge Road signal to the Rocky Ridge Road and Shades Crest Road signal would most likely be effective during peak hours, but also presents a likelihood of unacceptable inefficiency during nonpeak hours.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.4 US-31 at Shades Crest Road

US-31 is classified as a four-lane principal arterial with a speed limit of 40 MPH, and Shades Crest Road is classified as a two-lane minor arterial. Shades Crest Road is one of the major east-west roads in the City of Vestavia Hills, and it intersects US-31 in close proximity to the Vestavia City Center, which is a popular commercial destination. 24-hour turning movement counts from May 2012 were grown using a conservative 0.5% annual growth rate to reach the 2019 existing conditions year. Figure 9 shows a view of the full intersection, and Figure 10 shows the view of the intersection from the Shades Crest Road eastbound approach to US-31. School redistricting will affect this intersection, but no schools are close enough to quantify volume differences with any degree of accuracy. Analysis performed at the intersection included capacity analysis and crash data analysis.

Analysis

Table 13 shows the levels of service for existing conditions. The numbers shown in parentheses indicate the lane group delay per vehicle in seconds. The most pressing issue at this intersection is the interaction between the Shades Crest Road approaches during the side street phase. There is not a sufficient lane configuration for a protected left turn phase on the side streets, and it is difficult to gauge the intentions of opposing drivers due to the skew of the approaches. Figure 11 shows aerial imagery of the intersection.

Figure 9: Looking north at the intersection of US-31 at Shades Crest Road

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is propared solely for the purpose of identifying, evaluating, and place

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 10: Looking Eastbound from the Shades Crest Road approach to US-31

Figure 11: Aerial View of US-31 at Shades Crest Road

During the AM peak hour, the heaviest side street movements are the Shades Crest Road eastbound left turn and the Shades Crest Road westbound right turn. However, there is enough through volume on each Shades Crest Road approach to make it difficult to execute a permissive left turn, which hurts the efficiency of the side street phase. Similar issues are seen during the PM peak hour, but the Shades Crest Road movements are more balanced.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is prepared solely for the purpose of identifying, evaluating, and planning safety improver

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Table To: Existing Faile of oup Foo at ob of and offades of ost koda (2017)							
Approach		AM LOS		PM LOS			
Approach	Left	Thru	Right	Left	Thru	Right	
US-31 – Northbound	B (10.7)	D (48.6)	B (11.7)	C (27.3)	B (18.6)	A (4.7)	
US-31 – Southbound	D (42.4)	B (18.8)	A (3.5)	C (21.8)	C (32.4)	A (5.9)	
Shades Crest Road – Eastbound	F (>300)* F (198.2)						
Shades Crest Road – Westbound	E (72.1)	E (6	5.3)	F (165.5)	E (64	4.9)	

Table 13: Existing Lane Group LOS at US-31 and Shades Crest Road (2019)

*Computed delay in seconds exceeds a meaningful value

Crash data analysis from 2016 through 2018 reveals a high percentage of low-severity crashes. Over half of reported crashes at the intersection were rear end collisions, nearly 20% were angle crashes, and approximately 13% were sideswipe crashes. This data supports the notion that it is difficult to ascertain the intentions of opposing drivers on the Shades Crest Road approaches. The other potential safety concern observed during field observation was the lack of functional sight distance from the US-31 northbound left turn lane. Due to the vertical crest along US-31 just north of the intersection, it is difficult to achieve adequate sight distance to execute a permissive left turn on the US-31 northbound approach, especially when a vehicle is waiting to make the opposing left turn from the US-31 southbound left turn lane.

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

1. Convert the US-31 northbound left turn phase to protected-only.

Long Term Recommendations:

- 2. Widen both Shades Crest Road approaches to US-31. Each approach should have a left turn lane and a shared through/right lane. The left turn lanes should have at least 225 feet of storage length to separate the approach's movements early enough for the opposing side street drivers to discern each other's intentions prior to their actual decision point.
- 3. In conjunction with the widening of the Shades Crest Road approaches to US-31, install flashing yellow arrow (FYA) signal operation on the Shades Crest Road approaches to employ protected-permissive left turn phases. Remove pedestrian push-buttons and pedestrian timings, unless pedestrian facilities are constructed on the west side of the intersection. At that time, perform a signal timing study to determine the appropriate modified timings for the flashing yellow arrow operation.

For the analysis, a parameter was set to utilize the existing amount of the cycle length dedicated to the Shades Crest Road phase during the AM and PM peak hours in order

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

to fit the recently-retimed US-31 signal system throughout Vestavia Hills. Levels of service along US-31 at the intersection indicate that there is flexibility within the cycle to allocate more time to Shades Crest Road; however, a marginal benefit to the side street may not be an economical use of time when considering how that might affect the US-31 mainline. Given that US-31 within Vestavia Hills was retimed as recently as 2017 with several timing plans in place throughout each day of the week, the practical solution was to accommodate the existing signal coordination on US-31.

Table 14 shows the levels of service for the movements at each intersection after taking into account the recommendations found above. The benefits of the improvements found above come in the form of increased safety and a more functional configuration from the driver's perspective. The high cycle length on US-31 worsens the northbound left turning movement to LOS F, but the sight distance issue is mitigated for a low-volume movement.

Approach		AM LOS			PM LOS	
Approach	Left	Thru	Right	Left	Thru	Right
US-31 – Northbound	F (107.6)	D (48.6)	A (9.0)	F (103.5)	В	А
					(17.4)	(4.6)
US-31 – Southbound	D (44.7)	C (20.2)	A (2.0)	C (20.9)	D	А
					(33.7)	(6.4)
Shades Crest Road – Eastbound	F (>300)* F (80.1)		F (88.4)	F (109.6)		
Shades Crest Road – Westbound	E (70.5)	F (27	/2.8)	F (213.9)	E (97	7.4)

Table 14: Lane Group LOS at US-31 and Shades Crest Road with All Improvements (2019)

*Computed delay in seconds exceeds a meaningful value

2.5 US-31 at Columbiana Road/I-65 Northbound Ramps

US-31 is classified as a four-lane principal arterial with a speed limit of 40 MPH, and Columbiana Road is classified as a four-lane minor arterial with a speed limit of 40 MPH. Both routes utilize auxiliary turn lanes. The fourth leg (westbound) of the intersection is the I-65 northbound on and off ramps. This signalized intersection is running free with split-phased side streets. 24-hour turning movement counts from May 2012 were grown using a conservative 0.5% annual growth rate to reach the 2019 existing conditions year. Analysis completed at the intersection included a capacity analysis and crash data analysis. It should be noted that extensive capacity issues exist at this intersection and will be documented in any LOS tables, but the focus of the analysis was to provide the City with practical, economical short-term recommendations. Figure 12 shows the view of the US-31 southbound signal heads at the intersection along with the Columbiana Road eastbound right turn approach.

This intersection was included in two past studies performed by Sain Associates. The Statewide Wrong Way Interchange Assessment (2015) identified safety improvements with the focus of preventing wrong way movements at this interchange, which has a

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

higher potential for wrong way movements due to its partial cloverleaf configuration. The East Central Region Birmingham Area Horizontal Curve Study (2017) evaluated safety improvements for the segment of US-31 (SR-3) between approximate mile points 265.9 and 266.3. US-31's intersection with Columbiana Road and the I-65 Northbound Ramps occurs at approximate mile point 266.3. Documentation of recommendations from both studies can be found in Appendix H.

Analysis

Table 15 shows the existing conditions levels of service for each lane group at the intersection. The numbers shown in parentheses indicate the lane group delay per vehicle in seconds.

Approach		AM LOS			PM LOS		
Approach	Left	Thru	Right	Left	Thru	Right	
US-31 – Northbound	C (32.0)	C (31.2)	B (17.5)	D (49.7)	C (27.7)	A (9.8)	
US-31 – Southbound	C (20.3)	D (41.2)	A (4.6)	B (17.4)	F (86.2)	A (2.2)	
Columbiana Road – Eastbound	F (92.9)	F (84.9)	B (11.2)	F (97.8)	F (87.9)	E (55.9)	
I-65 Northbound Ramps –	E (56.9)	F (135.9)	F (208.6)	E (68.8)	F (134.6)	F	
Westbound						(>300)*	

Table 15: Existing Lane Group LOS at US-31 and Columbiana Road/I-65 Northbound Ramps (2019)

*Computed delay in seconds exceeds a meaningful value

The Columbiana Road right turn movement onto US-31 southbound is a dual-right turn lane. The outside right turn lane feeds into a US-31 southbound right turn lane onto the I-65 southbound on ramp. The inside right turn lane feeds into a US-31 southbound through lane. The dual-right turn lanes are currently regulated by the signal. However, observations revealed that familiar drivers tend to treat this as a yield condition when the signal heads are red. Unfamiliar drivers appear to be unsure of what to do when navigating this movement, which frustrates familiar drivers. In addition to that, the inside right turn lane vehicles impair the sight distance of the outside right turn lane drivers and prevents them from safely turning right on red. Some drivers ignore all signage, striping, and signals, and continue through the outside right turn lane without observing US-31 southbound traffic. In summary, the current layout for this dual-right turn lane is not clear enough and functional enough for familiar and unfamiliar drivers.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 12: View of Columbiana Road Right Turn Condition onto US-31 Southbound

Out of 95 reported crashes at this intersection from 2016 through 2018, approximately 79% of all reported crashes involved rear end collisions and approximately 94% of all reported crashes involved property damage only. These numbers are typical of a high-volume, high-capacity signalized intersection such as this. The skewed approach of Columbiana Road presents a higher potential for angle, sideswipe, and head-on collisions, so a focus on lane continuity, signage, and striping was adopted for the recommended safety and operational improvements. The data revealed that these three collision types comprised approximately 21% of all reported crashes in the dataset. At the I-65 northbound off ramp, the horizontal and vertical alignment of the approach causes limited sight distance and a higher potential for rear end collisions on this approach, but the cost of modifying the off ramp would be extremely high given the topography.

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

 Restripe the dual-right turn lane from Columbiana Road to US-31 southbound as shown on Figure 13. Convert the inside lane of Columbiana Road southbound to an option lane, enabling drivers to queue in that lane for either the movement to I-65 northbound or the movement to US-31 southbound. Provide pavement markings in advance to communicate to drivers the appropriate lanes to occupy.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

- 2. Perform access management at the gas station on the northern corner of the intersection. It currently has five (5) driveways, several of which are unnecessarily wide.
- 3. Convert one (1) access on Columbiana Road to a right-in, right-out configuration.

Long Term Recommendations:

None

Synchro is not able to adequately process the recommendations listed above in a manner that provides accurate changes to the existing conditions levels of service. However, it is estimated that restriping the right turn lane from Columbiana Road to US-31 southbound may slightly worsen the level of service for that movement, but substantially reduce the issues caused by driver confusion on the movement. Converting the inside lane of Columbiana Road to an option lane should function as an overflow lane for the right turning vehicles onto US-31 southbound. When there isn't a queue in the outside right turn lane, drivers will use the outside right turn lane to the yield condition at US-31. When a queue develops in the outside right turn lane, drivers can opt for the inside right turn lane, which is signalized in accordance with the Columbiana Road signal phase and overlaps with the US-31 northbound left turn phase. The volume distribution between the Columbiana Road left, through, and right turn lanes is so disproportionate towards the right turning movement that any left or through volume caught up in a queue for the right turn lanes would still translate to a more effective overall experience for the most amount of drivers.

Page 23

exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 13: US-31 at Columbiana Road Concept

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

Page 24

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.6 Columbiana Road at Shades Crest Road/Vestaview Lane

Columbiana Road is classified as a four-lane minor arterial with a speed limit of 45 MPH. Shades Crest Road and Vestaview Lane are both classified as two-lane major collectors. Columbiana Road and Shades Crest Road intersect twice, with Shades Crest Road running concurrently with Columbiana Road for approximately 450 feet. Figure 14 shows aerial imagery of the area. The southern, four-leg intersection of Columbiana Road and Shades Crest Road/Vestaview Lane is signalized and running free; the northern, three-leg intersection of Columbiana Road and Shades Crest Road is unsignalized. To fully capture the interaction between the two intersections, both were included in 24-hour turning movement counts collected on February 6, 2019. Shades Mountain Baptist Church is on the southeast corner of the southern intersection of Columbiana Road and Shades Crest Road/Vestaview Lane and has two satellite parking lots. One parking lot is on the southwest quadrant of the intersection, and the other parking lot is on the northeast quadrant of the intersection. School redistricting will place the new Pizitz Middle School along Columbiana Road approximately 1.25 miles south of these intersections. Theoretically, this will increase left turn volumes from Shades Crest Road westbound and Vestaview Lane westbound in the AM peak. Analysis performed at these intersections included a capacity analysis, crash data analysis, signal warrant, and pedestrian access evaluation.

Figure 14: Aerial View of Columbiana Road at Shades Crest Road/Vestaview Lane

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama Page 25

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Analysis

Existing conditions levels of service for each lane group of these intersections are shown in Tables 16 and 17. The numbers shown in parentheses indicate the lane group delay per vehicle in seconds.

Amproach		AM LOS				
Approach	Left	Thru	Right	Left	Thru	Right
Columbiana Road – Northbound	E (55.8)	D (37.7)	A (0)	D (50.4)	C (25.7)	A (0)
Columbiana Road – Southbound	C (31.8)	B (15.4)	A (0)	B (16.9)	C (23.3)	A (0)
Shades Crest Road – Eastbound	E (59.6)			B (27.3)		
Vestaview Lane – Westbound		C (24.8)			C (39.7)	

 Table 16: Existing Lane Group LOS at Columbiana Road and Shades Crest Road/Vestaview Lane (2019)

Table 17: Existing Lane Group L	OS at Columbiana Road and Shac	des Crest Road (2019))

Approach		AM LOS		PM LOS			
Approach	Left	Thru	Right	Left	Thru	Right	
Columbiana Road – Northbound		A (0)	A(0)		A (0)	A (0)	
Columbiana Road – Southbound	B (13.2)	A (0)		A (9.3)	A (0)		
Shades Crest Road – Westbound		F (123.5)			F (>300)*		

*Computed delay in seconds exceeds a meaningful value

A signal warrant analysis was performed at the northern intersection of Columbiana Road and Shades Crest Road, and the eight-hour volume warrant was satisfied. Despite the satisfaction of the warrant, it is important to recognize the tradeoffs associated with signalizing an intersection in close proximity to an existing signalized intersection. Should the City opt for signalization of the intersection, it is imperative that the two signals be synchronized. This can be done in several ways, including but not limited to time-based coordination via GPS-clock devices, wireless communications equipment, and wired communication by installing a physical cable between the cabinets. The GPS-clock devices would be the most cost-effective measure, but regular maintenance will be required to ensure that the clocks remain consistent with one another. Over time, the GPS-clocks tend to drift out of sync.

Benefits of signalizing the northern intersection of Columbiana Road and Shades Crest Road include the following:

- Decreases delays on Shades Crest Road westbound approach to Columbiana Road
- Eliminates sight distance concerns for the Shades Crest Road westbound approach to Columbiana Road.
- Provides better route connectivity for Shades Crest Road

Challenges associated with signalizing the northern intersection of Columbiana Road and Shades Crest Road include the following:

• High initial cost to construct a signal

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

Page 26

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

- Regular maintenance associated with ensuring that the two signals remain in sync
- Potential to induce more volume to the Shades Crest Road westbound approach to Columbiana Road
- Cost to upgrade the existing signal to communicate with the new signal

Crash data analysis revealed mostly low-severity crashes with approximately 84% registering as property damage only crashes. The most prevalent types of collisions among reported crashes at these intersections are angle crashes and rear end crashes. Though sight distance from the Shades Crest Road westbound approach is technically adequate, it is still challenging to complete the two-stage left turn from Shades Crest Road onto Columbiana Road southbound. The intersection sight distance requirements found in *A Policy on Geometric Design of Highways and Streets* (2011) are closely met for both directions (looking northbound and southbound) from the Shades Crest Road westbound approach, but it is difficult to ascertain which lane that Columbiana Road southbound vehicles occupy while simultaneously being aware of any vehicles traveling northbound on Columbiana Road. At 45 MPH, 500 feet of intersection sight distance is required. Looking northbound from the Shades Crest Road westbound approach to Columbiana Road, approximately 525 feet of sight distance is available. Looking southbound, approximately 625 feet of sight distance is available.

Another focus of the study of this particular intersection is pedestrian access. Currently, there are pedestrian signal heads on the two southern signal poles with push-button activation as well as a pedestrian phase for the side streets. There is no crosswalk or nearby sidewalk in the vicinity of the intersection. There is a mid-block pedestrian crossing on Vestaview Lane approximately 210 feet from the stop line used to travel between the church and the north satellite lot.

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- Install a crosswalk on the southern side of the Columbiana Road intersection with Shades Crest Road and Vestaview Lane. Install additional sidewalk to connect to the church sidewalk. Install a pedestrian refuge island between Columbiana Road and the frontage road. Figure 15 displays a concept showing each of these improvements.
- 2. If the City opts for signalization of the northern intersection of Columbiana Road and Shades Crest Road, design and install the signal. Conduct a study to

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

determine appropriate signal timings, splits, offsets, signage, and striping for the new signal arrangement.

- 3. Convert the Columbiana Road southbound right turn lane to a smart channel configuration as shown on Figure 15.
- 4. Install one (1) Stop (R1-1) sign on the frontage road approach to Vestaview Lane just east of Columbiana Road.

Long Term Recommendations:

• None

Tables 18 and 19 show the levels of service for each lane group at the intersections after taking into account the short term recommendations listed above. This table includes the signalization of the northern intersection and the optimization of any cycle lengths, splits, and offsets.

Slightly worsened levels of service on the side streets of the south intersection are a result of the additional green time required for Columbiana Road traffic to achieve good progression in both directions between the two signalized intersections.

Improvements (2019)								
Approach (Signalized)		AM LOS		PM LOS				
Approach (Signalized)	Left	Thru	Right	Left	Thru	Right		
Columbiana Road –	E (55.1)	C (28.5)	A (4.7)	D (47.5)	C (23.5)	A (5.2)		
Northbound								
Columbiana Road –	C (31.5)	B (10.5)	A (0.5)	B (10.5)	B (14.0)	A (1.5)		
Southbound								
Shades Crest Road –		F (97.1)			C (27.3)			
Eastbound								
Vestaview Lane –		C (27.7)			D (44.6)			
Westbound		-			-			

 Table 18: Lane Group LOS at Columbiana Road and Shades Crest Road/Vestaview Lane with All Improvements (2019)

Table 19: Lane Group LOS at Columbiana Road and Shades Crest Road with All Improvements (2019)

Approach (Signalized)		AM LOS		PM LOS			
Approach (Signalized)	Left	Thru	Right	Left	Thru	Right	
Columbiana Road –		A (4.2)	A (0.7)		B (10.9)	A (0.9)	
Northbound							
Columbiana Road –	A (5.0)	A (3.0)		B (11.7)	B (14.8)		
Southbound							
Shades Crest Road – Westbound		D (37.1)		C (35.0)			

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.7 US-31 at Vestavia Plaza/City Hall

US-31 is classified as a four-lane principal arterial with a speed limit of 40 MPH, and both accesses to US-31 are classified as local roads. This intersection is signalized and coordinated with a number of other signals along US-31 through Vestavia Hills. The primary focus of analysis on this particular intersection is to increase pedestrian access in the area. Nearby pedestrian trip generators and destinations include residential neighborhoods on both sides of US-31, shopping centers on the both sides of US-31, the Vestavia Hills City Hall on the west side of US-31, and the new community center schedule to open in 2020. Existing sidepaths are located along the west side of US-31 from Massey Road to Vestavia Court and the east side of US-31 from Pizitz Drive to Vesthaven Way. Vesthaven Way is approximately 400 feet south of this intersection. There is also existing sidewalk within the shopping centers on both sides of US-31 at this location. Figure 16 shows the view of the intersection from the west side of US-31 at Vestavia Plaza.

Figure 16: US-31 at Vestavia Plaza/City Hall

Analysis

Table 20 shows the current timings in place at the intersection. The phases most critical to pedestrian access would be the side street phases, which are Phases 4 and 8. During several time-of-day plans currently in service, the side street phase has a maximum split of 20 or 25 seconds. If pedestrian timings were implemented, these would need to be increased due to the intersection width of approximately 105 feet from back-of-curb to back-of-curb on the southern leg of the intersection. The minimum amount of time needed would be 4 seconds of 'Walk' time with an additional 28.5 seconds of 'Flashing – Don't Walk' time according to the ALDOT Traffic Signal Design Guide and Timing Manual (2015). For phases 2 and 6, the US-31 mainline cycle lengths allow plenty of

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on pu

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

time for pedestrian pedestrians to safely cross the side streets via crosswalk. The first column in Table 20 denotes each timing plan in place along the US-31 corridor throughout Vestavia. Each plan is identified within the controller by a combination of numbers, which represent the dial identifier, split identifier, and offset identifier, respectively. The time of day that each plan is active is included in parentheses beside the Dial/Split/Offset identifiers.

Dial / Split / Offset	Cycle	1	2	3	4	5	6	7	8	Offset
0/0/4 (Free)	-	1	-	-	-	-	-	1	-	-
1/1/1 (Off-peak)	110	20	70	0	20	20	70	0	20	11
2/1/1 (Mid-day)	160	20	115	0	25	20	115	0	25	88
2/3/1 (School Peak)	140	20	100	0	20	20	100	0	20	13
3/1/1 (AM Peak)	200	20	160	0	20	20	160	0	20	112
4/1/1 (PM Peak)	200	20	145	0	35	20	145	0	35	85

Table 20: Existing Signal Timing Plans and Splits at US-31 and Vestavia Plaza

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- Install a high-visibility crosswalk on the southern leg of the US-31 intersection at Vestavia Plaza and City Hall. Restripe the stop line and lane lines of US-31 northbound accordingly. Install pedestrian signal heads with countdown display. Figure 17 displays a concept showing each of these improvements.
- 2. Install additional sidewalk to connect to the existing sidewalks on both sides of US-31.

Long Term Recommendations:

• None

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama Page 32

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.8 US-31 at Pizitz Drive/Vestavia Forest Place

US-31 is classified as a four-lane principal arterial with a speed limit of 40 MPH, and both Pizitz Drive and Vestavia Forest Place are classified as local roads. This intersection is signalized and coordinated with a number of other signals along US-31 through Vestavia Hills. The primary focus of analysis on this particular intersection is to increase pedestrian access in the area. Nearby pedestrian trip generators and destinations include residential neighborhoods, high-density residential apartments, commercial establishments, and the existing Pizitz Middle School, which will house the 9th grade beginning in the 2020-2021 school year. It should be noted that the enrollment at Pizitz with 9th grade only is estimated to be less than half of the current middle school enrollment at the same facility (see Table 1). Existing sidepaths are located along the west side of US-31 from Massey Road to Vestavia Court and the east side of US-31 from Pizitz Drive to Vesthaven Way. Figure 18 shows the view of the intersection from the east side of US-31.

Figure 18: US-31 and Pizitz Drive/Vestavia Forest Place

Analysis

Table 21 shows the current timings in place at the intersection. The phases most critical to pedestrian access would be the side street phases, which are Phases 4 and 8. During one timing plan currently in service, the side street phase has a maximum split of 20 seconds. If pedestrian timings were implemented, the maximum split for that phase would need to be increased due to the intersection width of approximately 90 feet from the west edgeline to the east channelizing island on the northern leg of the intersection. The minimum amount of time needed would be 4 seconds of 'Walk' time with an additional 24 seconds of 'Flashing – Don't Walk' time according to the ALDOT Traffic Signal Design Guide and Timing Manual (2015). The first column in Table 21

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvem

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

denotes each timing plan in place along the US-31 corridor throughout Vestavia. Each plan is identified within the controller by a combination of numbers, which represent the dial identifier, split identifier, and offset identifier, respectively. The time of day that each plan is active is included in parentheses beside the Dial/Split/Offset identifiers.

Dial / Split / Offset	Cycle	1	2	3	4	5	6	7	8	Offset	
0/0/4 (Free)	-	-	-	-	-	-	-	-	-	-	
1/1/1 (Off-peak)	110	20	70	0	20	20	70	0	20	13	
2/1/1 (Mid-day)	160	20	110	0	30	20	110	0	30	11	
2/3/1 (School Peak)	140	20	80	0	40	35	65	0	40	84	
3/1/1 (AM Peak)	200	20	135	0	45	35	120	0	45	34	
4/1/1 (PM Peak)	200	20	145	0	35	20	145	0	35	190	

Table 21: Existing Signal Timing Plans and Splits at US-31 and Pizitz Drive/Vestavia Forest Place

Additionally, the existing striping of the Pizitz Drive approach to US-31 is confusing given the skew of the approach. The current striping causes the US-31 southbound left turning vehicles to traverse the outbound left turn lane of Pizitz Drive. The skew also causes conflicts between drivers crossing US-31 from Pizitz Drive and Vestavia Forest Place. The striping of the Pizitz Drive approach does not offer adequate lane continuity, making it difficult to discern where other drivers will go from either approach. Figure 19 displays aerial imagery of the intersection.

Figure 19: Aerial View of US-31 and Pizitz Drive/Vestavia Forest Place

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Short Term Recommendations:

- Install a crosswalk on the northern leg of the US-31 intersection at Pizitz Drive and Vestavia Forest Place. Restripe the stop line and lane lines of US-31 southbound accordingly. Additionally, install additional sidewalk to connect to the existing sidewalks on both sides of US-31. Install pedestrian signal heads with countdown display. Figure 20 displays a concept showing each of these improvements.
- 2. Restripe the Pizitz Drive approach as shown in Figure 20. Install a raised concrete island to channelize the right turn lane from Pizitz Drive to US-31 northbound and give pedestrians a refuge island.
- 3. Install a Yield Here to Pedestrians (R1-5) sign at the crosswalk located in the channelized right turn lane from Pizitz Drive westbound to US-31 northbound.

Long Term Recommendations:

• None

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 20: US-31 at Pizitz Drive/Vestavia Forest Place Concept

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama Page 36

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

2.9 **Dolly Ridge Road at Gresham Drive**

Dolly Ridge Road is classified as a two-lane major collector with a speed limit of 35 MPH, while Gresham Drive is classified as a local road with a speed limit of 25 MPH. The intersection is currently signalized and running free at all times. Dolly Ridge Road is a low-volume roadway connecting Rocky Ridge Road and Cahaba River Road. Analysis performed at this intersection included a capacity analysis, crash data analysis, and trip generation for the estimated enrollment for the 2019-2020 school year.

The intersection of Dolly Ridge Road and Gresham Drive will be heavily affected by school redistricting. For the 2018-2019 school year, Jefferson County still occupies the school while Vestavia Hills renovates the school in preparation for its use in the 2019-2020 school year and beyond. Table 1 denotes that the estimated enrollment at the new elementary school will be 735 students. With a sizeable shift in trip mode choice from bus to personal vehicle that will be associated with changing the school from a Jefferson County school to Vestavia Hills city school, the demands on nearby signalized intersections and roadways will change significantly.

Trip generation was performed for the new Dolly Ridge Elementary School based on traffic volumes from Cahaba Heights Elementary School performed during the 2013-2014 school year. Cahaba Heights Elementary is also a Vestavia Hills city school and serves as a baseline for calculating potential trips per student enrolled at the new elementary school. Additional information regarding the methodology used in this trip generation can be found in Appendix D.

The intersection currently has a left turn lane along Dolly Ridge Road eastbound and a channelized right turn lane from Gresham Drive to Dolly Ridge Road westbound. Figure 21 shows aerial imagery of the intersection.

exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 21: Aerial View of Dolly Ridge Road at Gresham Drive

The existing operational conditions for the AM and School PM peak hours were rendered mostly irrelevant due to the major changes brought about by school redistricting. Therefore, the existing volumes collected on February 6, 2019 were modified with trip generation volumes and analyzed after optimizing the signal timings to accommodate the new scenario. Largely unaffected by everyday school traffic, the afternoon commuter peak hour existing volumes were used in analysis for the PM peak hour. Table 22 displays the level of service for each lane group at the intersection after taking into account trip generation volumes. The numbers in parentheses indicate the average delay per vehicle in seconds.

	AM	LOS	School	PM LOS	PM* LOS		
Approach	Left Through/ Right		Left	Through/ Right	Left	Through/ Right	
Gresham Drive – Southbound	D (46.4)	A (8.7)	C (21.3)	A (8.2)	B (13.3)	A (8.3)	
Dolly Ridge Road – Eastbound	F (170.3)	A (6.0)	A (7.0)	A (5.8)	A (0)	A (2.6)	
Dolly Ridge Road – Westbound		C (27.4)		C (22.1)		A (2.7)	

Table 22: Existing Lane Gr	oup LOS with Trip Generation a	at Dolly Ridge Road and	Gresham Drive (2019)

*School trip generation estimates do not affect PM LOS, only AM and School PM LOS.

Table 23 shows the net added trips brought about by the trip generation. At its core, trip generation is a data-based approximation of future conditions for the surrounding area. The numbers shown below should be treated accordingly, especially for a scenario as unique as this one.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Table 25. Nel Added Volome by the Generation												
Approach	1	Net AM Trip	S	Net School PM Trips								
Approach	Left	Thru	Right	Left	Thru	Right						
Gresham Drive – Southbound	166	N/A	318	55	N/A	306						
Dolly Ridge Road – Eastbound	576	0	N/A	237	0	N/A						
Dolly Ridge Road – Westbound	N/A	0	16	N/A	0	115						

Table 23: Net Added Volume by Trip Generation

Though the peak hour factors used in the capacity analysis account for the fact that most school-related traffic will attempt to access the school in a small window of time, the levels of service shown in Tables 22 and 24 do not entirely capture the nature of a school peak hour. The arrival rate in the carpool queue will be higher than the departure rate, and queues will increase quickly at that time. However, the levels of service from the capacity analysis do reflect the fact that traffic on Dolly Ridge Road is light enough that a protected-permissive left turn phase on Dolly Ridge Road should be able to handle much of the stress put on the intersection during these short peaks. For this reason, the school should develop a detailed circulation plan for pickup and dropoff to ensure that process is as safe and efficient as it can be. If carpool queues reach Dolly Ridge Road, it will not matter how efficiently the signal performs.

The crash data analysis at this intersection included three (3) crashes from 2016 through 2018. The sample size is too small to derive any major conclusions, but speed or distracted driving was a factor in each of the reported crashes. The combination of the horizontal curves and the significant grade changes in the vicinity of this intersection cause sight distance issues, but this type of topography is typical of Dolly Ridge Road and well within driver expectation for drivers who are familiar with the road.

Recommendations

Considering existing safety and operational performance of the intersection, the following short-term and long-term recommendations should be implemented.

Short Term Recommendations:

- 1. Extend the left turn lane at the Dolly Ridge Road eastbound approach as far back as feasible. Due to existing pavement width and time constraints, this leg of the intersection could be restriped with lane widths of 10 feet to extend the left turn lane to allow a storage length of approximately 325 feet, a taper length of 100 feet, and a transition taper length of 205 feet (see Figure 22).
- 2. Widen Gresham Drive southbound to two lanes (one left turn lane, one right turn lane) to the school exit driveway or as far back as feasible.
- 3. Implement the base signal timings included in Appendix E. Periodically check that all detection continues to function. Monitor the intersection once school begins and make any necessary tweaks.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

- 4. Upon any widening of Gresham Drive, resurface the roadway from Dolly Ridge Road to the northernmost school access point.
- 5. Develop a circulation plan for school pickup and dropoff to minimize impact to the signal performance of Dolly Ridge Road at Gresham Drive.
- 6. Install one (1) Signal Ahead Warning (W3-3) sign approximately 325 feet from the stop line along Dolly Ridge Road eastbound.
- 7. Install one (1) 20 MPH School Zone Speed Limit Assembly in each direction along Dolly Ridge Road approximately 1000 feet prior to the intersection with Gresham Drive. The assembly consists of one (1) 20 MPH Speed Limit (R2-1) sign, one (1) School (S4-3P) plaque, and one time of day plaque (S4-1P). See Figure 7B-1 in the Manual on Uniform Traffic Control Devices (2009) for other options on the assembly. Install one (1) End School Zone (S5-2) sign in each direction along Dolly Ridge Road approximately 1000 feet after the intersection with Gresham Drive.
- 8. Trim any vegetation blocking Dolly Ridge Road eastbound drivers' view of the signal heads at the intersection of Gresham Drive. Trim vegetation blocking the Gresham Drive southbound signal heads.

Long Term Recommendations:

• None

Table 24 shows the levels of service for the movements at the intersection after taking into account the recommendations. This table includes the optimization of any cycle lengths and splits. Synchro does not register a level of service improvement after lengthening existing turn lanes; however, it is clear that the existing turn lanes are insufficient for the volume expected at the intersection during school peak hours. Lengthening the Dolly Ridge Road eastbound left turn lane will lessen the impact on Dolly Ridge Road through traffic, while widening to two lanes on Gresham Drive southbound for any amount of length will allow school traffic to exit more efficiently.

	AM	LOS	School	PM LOS	PM* LOS							
Approach	Left	Through/ Right	Left	Through/ Right	Left	Through/ Right						
Gresham Drive – Southbound	F (88.6)	B (10.8)	B (16.9)	A (6.1)	B (11.0)	A (6.7)						
Dolly Ridge Road – Eastbound	F (91.8)	A (4.9)	A (9.3)	A (7.9)	A (0)	A (3.5)						
Dolly Ridge Road – Westbound		D (43.9)		C (20.5)		A (3.6)						

Table 24: Lane Group LOS at Dolly Ridge Road and Gresham Drive with Improvements (2019)

*School trip generation estimates do not affect PM LOS, only AM and School PM LOS.

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Figure 22: Concept for Restriping Dolly Ridge Road just south of Gresham Drive

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama Page 41

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

3 Cost Estimates

Planning level cost estimates were prepared for the improvement recommendations for each studied intersection. These detailed opinions of cost are included in Appendix I. Each estimate is based on the engineer's experiences and qualifications and represents the engineer's best judgment within the industry. The engineer does not guarantee that proposals, bids, or actual costs will not vary from the engineer's opinion of probable cost. Table 25 provides a summary of costs estimated in 2019 dollars for the improvement recommendations. For budgeting future year projects, the City will need to escalate the costs to future year dollars.

A contingency of 25% was included in each estimate. This contingency cost includes miscellaneous and/or unknown items that cannot be quantified at the time the study was conducted. The improvements identified at some of the intersections will require utility relocation and/or right-of-way acquisition; the 25% contingency does not cover utility or right-of-way costs which should be considered when programming any future projects.

Some of the improvement recommendations can be implemented solely with City funds. In instances where the proposed improvements are more extensive or costly, it is likely that federal or state funding would be required. For these cases, ALDOT indirect costs were included in the cost estimate and were estimated at 13.63% of the total project costs.

Intersection	Opinion of Cost (Yr. 2019)					
	Short Term	Long Term				
Rocky Ridge Road @ Dolly Ridge Road	\$100,000	\$1.21M				
Sicard Hollow Road @ Blue Lake Drive	\$320,000	\$2.02M				
Rocky Ridge Road @ Shades Crest Road and US-280	\$1M					
US-31 @ Shades Crest Road	\$50,000	\$1.13M				
US-31 @ Columbiana Road/I-65 Northbound Ramps	\$370,000					
Columbiana Road @ Shades Crest Road/Vestaview Lane	\$770,000					
US-31 @ Vestavia Plaza/City Hall	\$260,000					
US-31 @ Pizitz Drive	\$230,000					
Dolly Ridge Road @ Gresham Drive	\$750,000					

Table 25: Summary	of O	pinion of	Probable	Costs in	Year 2019	Dollars

Vestavia Hills Traffic Operations Study (Phase I) APPLE Study Vestavia Hills, Alabama

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

4 Funding Sources

The City has the option to fund the design and construction of their preferred improvements using only local funds. Choosing this route allows the project design and construction to have shorter timelines and the potential for reduced project costs since fewer plan reviews would be required and City guidelines will govern the project design. Improvements that only affect city or county roadways will be able to operate on a quicker timeline, but any improvements located on state routes must go through additional approvals, permitting, and use ALDOT standards.

Costs associated with the design and construction of the proposed alternatives could exceed the City's current available resources. This section discusses funding sources that are available to aid in design and construction. Federal programs are administered by the Alabama Department of Transportation. Table 26 details funding sources, the category of the source and type of project for which the funding can be used.

Funding Source	Category	Match Type				
Surface Transportation Plan (STP)	Federal	80% Federal / 20% City				
Highway Safety Improvement Plan (HSIP)	Federal	90% Federal / 10% City				
Transportation Alternatives Program (TAP)	Federal	80% Federal / 20% City				
Congestion Mitigation and Air Quality Improvement Program (CMAQ)	Federal	80% Federal / 20% City				

	Table 2	26: Fun	ding O	ptions
--	---------	---------	--------	--------

The Surface Transportation Program (STP), administered by ALDOT, requires an 80 Federal/20% Local match. The STP program provides flexible funding to states and localities for their use in preserving and improving the conditions and performance of a roadway. STP eligible activities applicable to the alternatives studied include: operational improvements for highways and intersections with high levels of congestion. The downside to STP funding is the time it adds to the overall project. Additional time is required in order to account for ALDOT and FHWA involvement including additional plan reviews and more stringent design and construction standards. For these reasons, a timeframe for completing a STP funded project is estimated at five to eight years. https://www.fhwa.dot.gov/specialfunding/stp/160307.cfm

The Highway Safety Improvement Program (HSIP) is a 90% Federal/10% Local match program and has been continued through the Fixing America's Surface Transportation Act (FAST Act). HSIP exists to provide funding to perform projects that seek to reduce the number of fatalities and serious injuries resulting from traffic crashes. HSIP funds are administered by ALDOT's Safety Operations Office. The application for HSIP funds

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

requests, among other general project details, that the project sponsor show how the proposed project will improve safety using Crash Reduction Factors (CRF). A benefit/cost ratio is also a requirement of the application. The application must be signed by a Professional Engineer. Like STP funding, HSIP funded projects require additional time in order to account for ALDOT and FHWA involvement including additional plan reviews and more stringent design and construction standards. For these reasons, a timeframe for completing a HSIP funded project is estimated at five to eight years.

https://safety.fhwa.dot.gov/hsip/

The Transportation Alternatives Program (TAP) is an 80% Federal/20% Local match program continued through the Fixing America's Surface Transportation (FAST) Act. TAP funding is available for projects defined as transportation alternatives. Example of transportation alternatives include the following scenarios: on- and off-road pedestrian and bicycle facilities, infrastructure projects for improving non-driver access to public transportation and enhance mobility, community improvement activities such as historic preservation and vegetation management, environmental mitigation related to stormwater and habitat connectivity, recreational trail projects, safe routes to school projects, and projects for planning, designing, or constructing boulevards and other roadways largely in the right-of-way of former divided highways.

https://www.fhwa.dot.gov/environment/transportation_alternatives/

The Congestion Mitigation and Air Quality Improvement Program (CMAQ) is a 80% Federal/20% Local match program and has been continued through the Fixing America's Surface Transportation Act (FAST Act). CMAQ funding is available to reduce congestion and improve air quality for areas that do not meet the National Ambient Air Quality Standards for various pollutants. Any project must be included in the metropolitan planning organization's (MPO) current transportation plan and transportation improvement plan (TIP).

https://www.fhwa.dot.gov/fastact/factsheets/cmaqfs.cfm

5 Next Steps

The purpose of this study was to determine the feasibility of potential improvements to several intersections throughout the City of Vestavia Hills. The City may elect to pursue projects described in this study without federal funding. However, an Alabama Department of Transportation (ALDOT) permit for the improvements would have to be obtained for any work that would occur inside ALDOT right-of-way. If the City chooses to move forward with implementing any of the proposed improvements and would like to pursue Federal funding, the next step would be to request inclusion of a project in the Birmingham Regional Transportation Improvement Plan (TIP). Once funds are in

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

place for the project, an environmental document will need to be prepared. The environmental document must include technical studies and public involvement outreach necessary to comply with procedures of NEPA. Once the environmental study has been completed, design would be finalized followed by construction. If it is determined that additional right-of-way is required, acquisition would be conducted prior to construction.

This report is prepared solely for the purpose of identifying, evaluating, and planning safety improvements on public roads; and is therefore exempt from open records, discovery or admission under Alabama law and 23 U.S.C. §§ 148(h)(4), and 409.

Appendix A – Raw Traffic Counts

		Eastbound Westbound							North	bound			South	bound			
	Sic	card Hollo	w Rd (We	est)	Si	Sicard Hollow Rd (East)			Blue Lake Dr				Cahaba Heights Rd				
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int
TIME	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	Total
0715 - 0730	0	0	0	0	0	32	0	60	0	0	195	31	0	26	42	0	386
0730 - 0745	0	0	0	0	0	53	0	83	0	0	169	23	0	32	63	0	423
0745 - 0800	0	0	0	0	0	65	0	63	0	0	135	11	0	22	77	0	373
0800 - 0815	0	0	0	0	0	80	0	66	0	0	98	15	0	12	71	0	342
Grand Total	0	0	0	0	0	230	0	272	0	0	597	80	0	92	253	0	1524
Approach (%)	0.00	0.00	0.00	0.00	0.00	45.82	0.00	54.18	0.00	0.00	88.18	11.82	0.00	26.67	73.33	0.00	
Total (%)	0.00	0.00	0.00	0.00	0.00	15.09	0.00	17.85	0.00	0.00	39.17	5.25	0.00	6.04	16.60	0.00	
PHF		0	%			86	5%			75	5%			87	%		90%
FILE	0%	0%	0%	0%	0%	72%	0%	82%	0%	0%	77%	65%	0%	72%	82%	0%	
P/Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cars	0	0	0	0	0	226	0	272	0	0	588	77	0	92	250	0	1505
Single Unit Trucks	0	0	0	0	0	3	0	0	0	0	9	2	0	0	3	0	17
Combination Trucks	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2
P/Cycle (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cars (%)	0.00	0.00	0.00	0.00	0.00	98.26	0.00	100.00	0.00	0.00	98.49	96.25	0.00	100.00	98.81	0.00	98.75
Single Unit Trucks (%)	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	1.51	2.50	0.00	0.00	1.19	0.00	1.12
Combination Trucks (%)	0.00	0.00	0.00	0.00	0.00	0.43	0.00	0.00	0.00	0.00	0.00	1.25	0.00	0.00	0.00	0.00	0.13

Vestavia Hills, AL Classified Turn Movement Count							CH-113 Rock 977	ky Ridge	e Rd (Nor 589	h)					
Site 2 of 5 CH-97 Shades Crest Rd				Cycle 0	Peds 0	284	In 693	0.33	Out 0						
CH-113 Rocky Ridge Rd (South)	8					Right	Thru		U-Turn						
CH-113 Rocky Ridge Rd (North)	Shades Crest Rd	301	Out	0	U-Turn			N							
Lat/Long 33.461629*, -86.757834*	-97 Shade	0.90 283	In	264 19	Left Right		W	0.97 S	E						
Date Wednesday 6 February 2019	CH-97		Peds	0	5		U-Turn	Left	The second						
Weather Showers			Cycle	U			0 Out	17	Thru 325 In			0 Peds	0 Cycle		
Temp: 21°C 0000 - 2400 (Weekday 24h Session)						(712 CH-113 Rock			th)					
0000 - 2400 (Weekudy 2411 Session)		East	ound		1		Г		North	bound			Southb	ound	1
TIME	U-Turn 2.1	H-97 Shac Left 2.2	es Cres	t Rd Right 2.3			1	CH-11 U-Turn 2.4	3 Rocky I Left 2.5	Ridge Rd (So Thru 2.6		CH-113 U-Tum 2.7	Rocky Ri	dge Rd (North) Thru Right 2.8 2.9	Int Ro Total H
0000 - 0015 0015 - 0030	0	2		0				0	0	1 2		0		6 1 2 1	10 2 6 2
0030 - 0045 0045 - 0100 0100 - 0115	0	2 0 0		0				0	0 0 0	2 1 2		0	-	0 6 1 0 4 0	10 2 2 1 6 1
0115 - 0130 0130 - 0145	0	1		0				0	1	1		0		1 1 2 0	5 1 6 1
0145 - 0200 0200 - 0215 0215 - 0230	0	0		0				0	0	1 0 1	F	0		1 0 1 0 2 2	2 1 1 1 5 1
0230 - 0245 0245 - 0300	0	0		0				0	0	1		0	-	1 0	2
0300 - 0315 0315 - 0330 0330 - 0345	0	0 1 0		0			-	0	0 0 0	0 1 0	F	0 0	-	1 1 0 0 1 0	2 1 2 1 1 1
0345 - 0400 0400 - 0415 0415 - 0430	0 0 0	1 0 0		0			Ē	0	0	0 1 7	F	0 0	F	1 1 1 2 0 1	3 3 4 4 8 4
0430 - 0445 0445 - 0500	0	4		0			ļ	0	1 0	10 6	ŀ	0		0 1 0 4	16 6 14 8
0500 - 0515 0515 - 0530 0530 - 0545	0	0 4 4		0 0 0			Ē	0 0	0 1 1	8 12 17	F	0 0	F	1 1 1 3 5 10	10 1 21 1 37 2
0545 - 0600 0600 - 0615	0	4		0			ļ	0	1	31 37	F	0		5 17 5 9	58 3 56 4
0615 - 0630 0630 - 0645 0645 - 0700	0	12 11 14		1 1 0			F	0 0	0 1 0	44 80 104	F	0 0	F	12 21 22 28 35 43	90 6 143 8 196 9
0700 - 0715 0715 - 0730	0	17 30		3			Ē	0	2	131 128	E	0		40 46 61 32	239 10 259 11
0730 - 0745 0745 - 0800 0800 - 0815	0	33 27 61		6 5 7			ŀ	0 0	1 0 2	104 111 113	þ	0 0		85 43 82 44 66 52	272 10 269 10 301 10
0815 - 0830 0830 - 0845 0845 - 0900	0	32 37		1 2			Ē	0	3 1	126 125	E	0		51 36 56 49	249 9 270 9
0900 - 0915 0915 - 0930	0	29 37 34		1 2 0			-	0	3 2 2	106 81 92		0	-	74 51 47 42 61 36	265 9 211 8 225 8
0930 - 0945 0945 - 1000 1000 - 1015	0	44 34 35		0 3 2				0 0	4 3 3	77 96 74	E	0 0	-	49 51 51 42 55 45	225 8 229 8 214 8
1015 - 1030 1030 - 1045	0	47 32		5			-	0	4	59 74		0	Ē	53 45 53 35 56 42	203 8 207 8
1045 - 1100 1100 - 1115 1115 - 1130	0	33 44 50		4 3 4			_	0	2 4	58 69 99	E	0	-	64 31 53 33 74 40	192 9 206 9 268 10
1130 - 1145 1145 - 1200	0	52 52		3			-	0	2	71 74		0	-	69 37 84 51	234 9 273 10
1200 - 1215 1215 - 1230 1230 - 1245	0	33 49 52		4 3				0	4 4 10	65 61 71	F	0	-	83 42 90 44 72 49	231 9 251 10 255 10
1245 - 1300 1300 - 1315	0	58 50		3				0	6 5	78 76		0	-	70 40 80 47	255 10 263 10
1315 - 1330 1330 - 1345 1345 - 1400	0	36 40 49		5 4 3				0	2 2 9	84 58 65	-	0	-	77 43 93 43 82 43	247 10 240 10 251 10
1400 - 1415 1415 - 1430 1430 - 1445	0	44 59 43		4 6 1			F	0 0	2 3 3	95 58 63		0 0	Ē	84 41 91 52 81 44	270 10 269 10 235 10
1445 - 1500 1500 - 1515	0	43 57 53		6			-	0	5	64 62		0	Ē	112 41 86 32	285 11 233 12
1515 - 1530 1530 - 1545 1545 - 1600	0	49 63 59		4 7 2			E	0 0	1 2 6	79 90 105		0 0		101 48 150 54 114 42	282 13 366 14 328 14
1600 - 1615 1615 - 1630	0	51 49		6			-	0	1	114 78		0	-	143 35 178 59	350 15 369 15
1630 - 1645 1645 - 1700 1700 - 1715	0	75 53 67		4 7 6			-	0 0 0	1 6 5	71 92 82	-	0	-	195 69 153 75 184 68	415 16 386 15 412 15
1715 - 1730 1730 - 1745	0	69 63		2				0	5	80 75		0		161 72 181 60	389 15 391 14
1745 - 1800 1800 - 1815 1815 - 1830	0	53 62 49		4 3 2			ļ	0 0 0	4 4 3	78 75 89	þ	0 0		190 69 148 45 114 47	398 12 337 10 304 9
1830 - 1845 1845 - 1900 1900 - 1915	0	44 32 42		2 1 5			F	0	0 2 3	48 37 36	F	0	ļ	82 37 79 45 74 26	213 7 196 6 187 6
1915 - 1930 1930 - 1945	0	31 19		1			ļ	0	2	39 30	ŀ	0		68 32 66 22	173 5 138 5
1945 - 2000 2000 - 2015 2015 - 2030	0	19 34 36		0 0 3			F	0 0	0 1 2	30 18 39	F	1 0	F	57 18 70 13 62 30	125 5 136 5 172 5
2030 - 2045 2045 - 2100	0	26 31		3			Ē	0	1	36 29	E	0		51 14 37 21	131 4 118 3
2100 - 2115 2115 - 2130 2130 - 2145	0	17 14 8		0			F	0 0	2	26 16 14	ŀ	0 0	-	39 16 41 19 32 9	100 3 92 2 65 2
2145 - 2200 2200 - 2215	0	26 4		0			Ē	0	1	21 10	Ē	0		22 9 24 2	79 1 40 1
2215 - 2230 2230 - 2245 2245 - 2300	0	3 3 1		1 1			ļ	0 0 0	1 1 0	7 9 10	ŀ	0 0	F	18 6 12 3 15 4	36 1 29 1 31 9
2300 - 2315 2315 - 2330	0	5 1		1			Ē	0	1	6 4	F	0		13 4 6 2	30 7 14
2330 - 2345 2345 - 0000	0	4		0			ļ	0	0	3 6	þ	0		11 1 3 1	19 12
Grand Total	0	2616		191				0	175	4724		4	[5338 2629	15677
Approach (%) Total (%)	0.00	93.20 16.69		6.80 1.22				0.00	3.57 1.12	96.43 30.13		0.05 0.03		66.97 32.98 34.05 16.77	
P/Cycle Cars	0	0 2576		0 185			ŀ	0	0 173	0 4672	ŧ	0	F	0 1 5278 2584	1
Single Unit Trucks Combination Trucks	0	35 5		6 0				0	2	50 2		0	-	59 38 1 6	-
P/Cycle (%) Cars (%) Single Unit Trucke (%)	0.00	0.00 98.47		0.00				0.00	0.00 98.86	98.90		0.00	F	0.00 0.04 98.88 98.29	1
Single Unit Trucks (%) Combination Trucks (%)	0.00	1.34 0.19		3.14 0.00			H	0.00	1.14	1.06 0.04		0.00	-	1.11 1.45 0.02 0.23	1

		East	ound	
	CH	I-97 Shac	les Crest	Rd
	U-Turn	Left		Right
TIME	2.1	2.2		2.3
1630 - 1645	0	75		4
1645 - 1700	0	53		7
1700 - 1715	0	67		6
1715 - 1730	0	69		2
Grand Total	0	264		19
Approach (%)	0.00	93.29		6.71
Total (%)	0.00	16.48		1.19
PHE		90)%	
FNF	0%	88%		68%
P/Cycle	0	0		0
Cars	0	262		18
Single Unit Trucks	0	1		1
Combination Trucks	0	1		0
P/Cycle (%)	0.00	0.00		0.00
Cars (%)	0.00	99.24		94.74
Single Unit Trucks (%)	0.00	0.38		5.26
Combination Trucks (%)	0.00	0.38		0.00
			-	

		bound	South			bound	North	
	(North)	Ridge Rd	3 Rocky F	CH-11	(South)	Ridge Rd	3 Rocky F	CH-11
Int	Right	Thru		U-Turn		Thru	Left	U-Turn
Total	2.9	2.8		2.7		2.6	2.5	2.4
415	69	195		0		71	1	0
386	75	153		0		92	6	0
412	68	184		0		82	5	0
389	72	161		0		80	5	0
1602	284	693		0		325	17	0
							0	
	29.07	70.93		0.00		95.03	4.97	0.00
	17.73	43.26		0.00		20.29	1.06	0.00
97%		3%	93			%	-	
	95%	89%		0%		88%	71%	0%
0	0	0		0		0	0	0
1590	280	689		0		325	16	0
10	3	4		0		0	1	0
2	1	0		0		0	0	0
0.00	0.00	0.00		0.00		0.00	0.00	0.00
99.25	98.59	99.42		0.00		100.00	94.12	0.00
0.62	1.06	0.58		0.00		0.00	5.88	0.00
0.12	0.35	0.00		0.00		0.00	0.00	0.00
			•					
1								

		East	oound			West	bound			North	bound			South	bound		
	CH	I-97 Shac	les Crest	Rd		Vestav	/iew Ln			Columb	iana Rd		С	H-97 Colu	umbiana F	۶d	
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int
TIME	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.14	3.15	3.16	Total
1700 - 1715	0	13	16	4	0	26	44	35	1	11	148	26	0	46	195	79	644
1715 - 1730	0	21	21	4	0	30	37	19	0	5	111	29	1	41	235	80	634
1730 - 1745	0	14	29	4	0	27	47	26	0	7	96	33	1	49	242	67	642
1745 - 1800	0	17	22	1	0	30	38	28	0	5	105	27	0	63	222	69	627
Grand Total	0	65	88	13	0	113	166	108	1	28	460	115	2	199	894	295	2547
Approach (%)	0.00	39.16	53.01	7.83	0.00	29.20	42.89	27.91	0.17	4.64	76.16	19.04	0.14	14.32	64.32	21.22	
Total (%)	0.00	2.55	3.46	0.51	0.00	4.44	6.52	4.24	0.04	1.10	18.06	4.52	0.08	7.81	35.10	11.58	
PHF		88	3%			92	2%			81	1%			97	7%		99%
FIIF	0%	77%	76%	81%	0%	94%	88%	77%	25%	64%	78%	87%	50%	79%	92%	92%	
P/Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cars	0	65	88	13	0	113	166	108	1	28	460	115	2	199	894	294	2546
Single Unit Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Combination Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P/Cycle (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cars (%)	0.00	100.00	100.00	100.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.66	99.96
Single Unit Trucks (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.04
Combination Trucks (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Vestavia Hills, AL Classified Turn Movement Count

Site 4 of 5 CH-97 Shades Crest Rd CH-97 Columbiana Rd Columbiana Rd

Lat/Long 33.441588*, -86.808259*

Date Wednesday 6 February 2019

Weather Showers Temp: 21*C

0000 - 2400 (Weekday 24h Session)

TIME	Т
0000 - 0015	1
0015 - 0030	-
0030 - 0045 0045 - 0100	-
0100 - 0115	-
0115 - 0130	
0130 - 0145	
0145 - 0200	
0200 - 0215	
0215 - 0230	-
0230 - 0245 0245 - 0300	-
0300 - 0315	-
0315 - 0330	+
0330 - 0345	
0345 - 0400	
0400 - 0415	
0415 - 0430	
0430 - 0445	-
0445 - 0500 0500 - 0515	-
0515 - 0530	+
0530 - 0545	-
0545 - 0600	
0600 - 0615	
0615 - 0630	
0630 - 0645	_
0645 - 0700 0700 - 0715	+
0700 - 0715 0715 - 0730	+
0730 - 0745	1
0745 - 0800	1
0800 - 0815	I
0815 - 0830	4
0830 - 0845	4
0845 - 0900 0900 - 0915	+
0900 - 0915 0915 - 0930	+
0930 - 0945	1
0945 - 1000	1
1000 - 1015	
1015 - 1030	_
1030 - 1045 1045 - 1100	-
1100 - 1115	-
1115 - 1130	-
1130 - 1145	
1145 - 1200	1
1200 - 1215	
1215 - 1230	-
1230 - 1245 1245 - 1300	-
1300 - 1315	-
1315 - 1330	-
1330 - 1345	1
1345 - 1400	
1400 - 1415	
1415 - 1430 1430 - 1445	-
1445 - 1500	-
1500 - 1515	+
1515 - 1530	
1530 - 1545	
1545 - 1600	
1600 - 1615	
1615 - 1630	+
1630 - 1645 1645 - 1700	+
1700 - 1715	
1715 - 1730	
1730 - 1745	
1745 - 1800	
1800 - 1815	4
1815 - 1830 1830 - 1845	+
1845 - 1900	+
1900 - 1915	1
1915 - 1930	1
1930 - 1945	1
1945 - 2000	4
2000 - 2015 2015 - 2030	4
2015 - 2030 2030 - 2045	+
2045 - 2100	1
	I
2100 - 2115	1
2115 - 2130	-
2115 - 2130 2130 - 2145	7
2115 - 2130 2130 - 2145 2145 - 2200	-
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230 2230 - 2245 2245 - 2300	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230 2230 - 2245 2245 - 2300 2300 - 2315	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2230 - 2245 2230 - 2245 2245 - 2330 2330 - 2315 2315 - 2330	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230 2230 - 2245 2245 - 2330 2300 - 2315 2315 - 2330 2330 - 2345	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2230 - 2245 2230 - 2245 2245 - 2330 2330 - 2315 2315 - 2330	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230 2230 - 2245 2245 - 2300 2300 - 2315 2315 - 2330 2330 - 2335 2330 - 2345 2335 - 0000	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2230 2230 - 2245 2245 - 2330 2300 - 2315 2315 - 2330 2330 - 2345	
2115 - 2130 2130 - 2146 2145 - 2200 2200 - 2216 2215 - 2230 2230 - 2245 245 - 2330 2450 - 2315 2415 - 2330 2430 - 2345 2430 - 2345 2430 - 2345 2456 - 0000 Grand Total	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2216 - 2230 2230 - 2245 2245 - 2300 2300 - 2315 2315 - 2330 2330 - 2345 2345 - 0000 Crand Total Approach (%)	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2215 - 2220 2230 - 2245 245 - 2330 2300 - 2315 2315 - 2330 2315 - 2345 2345 - 2345 2345 - 2345 2345 - 2345	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2216 - 2230 2230 - 2245 2245 - 2300 2300 - 2315 2315 - 2330 2330 - 2345 2345 - 0000 Crand Total Approach (%)	
2115 - 2130 2130 - 2146 2145 - 2200 2200 - 2216 2215 - 2230 2230 - 2246 2245 - 2300 2300 - 2315 2315 - 2330 2330 - 2346 2345 - 2346 2345 - 0000 Grand Total Approach (%) Total (%)	
2115 - 2130 2130 - 2145 2145 - 2200 2200 - 2215 2216 - 2230 2230 - 2245 2245 - 2300 2300 - 2315 2315 - 2330 2330 - 2345 2345 - 0000 Grand Total Approach (%)	

Single Unit Trucks Combination Trucks

P/Cycle (%) Cars (%) Single Unit Trucks (%) Combination Trucks (%)

TIME
1700 - 1715
1715 - 1730
1730 - 1745
1745 - 1800

Grand Total

Approach (%)	
Total (%)	
PHF	
P/Cycle	_
Cars	
Single Unit Trucks	
Combination Trucks	

P/Cycle (%)	
Cars (%)	
Single Unit Trucks (%)	
Combination Trucks (%)	

	West	bound			North	hbound Southbound						
CH	I-97 Shac	les Crest	Rd	С	H-97 Colu	umbiana F	٨d		Columb	iana Rd		
U-Turn	Left		Right	U-Turn		Thru	Right	U-Turn	Left	Thru		Int
4.1	4.2		4.3	4.4		4.5	4.6	4.7	4.8	4.9		Total
0	78		35	0		173	24	0	21	245		576
0	82		32	0		123	25	0	22	272		556
0	66		21	0		115	26	0	18	293		539
0	65		26	0		124	21	1	17	286		540
											_	
0	291		114	0		535	96	1	78	1096		2211
											-	
0.00	71.85		28.15	0.00		84.79	15.21	0.09	6.64	93.28	ĺ	
0.00	13.16		5.16	0.00		24.20	4.34	0.05	3.53	49.57		
	89	9%			80)%			94	1%		96%
0%	89%		81%	0%		77%	92%	25%	89%	94%		
0	0		0	0		0	0	0	0	0		0
0	290		110	0		535	96	1	78	1096		2206
0	1		4	0		0	0	0	0	0		5
0	0		0	0		0	0	0	0	0		0
		-									-	
0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00
0.00	99.66		96.49	0.00		100.00	100.00	100.00	100.00	100.00		99.77
0.00	0.34		3.51	0.00		0.00	0.00	0.00	0.00	0.00		0.23
0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00
											-	

		East	ound			West	bound			North	bound			South	bound		
			am Dr				Ridge Cir			<u>, ,</u>	Rd (Sout	. /		· · ·	e Rd (Nort	/	
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int
TIME	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10	5.11	5.12	5.13	5.14	5.15	5.16	Total
0715 - 0730	0	0	2	2	0	0	0	0	0	21	47	0	0	0	33	12	117
0730 - 0745	0	0	15	20	0	0	0	0	0	19	76	1	0	0	29	13	173
0745 - 0800	0	0	8	20	0	0	0	0	0	14	75	0	0	0	43	13	173
0800 - 0815	0	0	5	25	0	0	0	0	0	5	60	1	0	0	38	2	136
Grand Total	0	0	30	67	0	0	0	0	0	59	258	2	0	0	143	40	599
Approach (%)	0.00	0.00	30.93	69.07	0.00	0.00	0.00	0.00	0.00	18.50	80.88	0.63	0.00	0.00	78.14	21.86	
Total (%)	0.00	0.00	5.01	11.19	0.00	0.00	0.00	0.00	0.00	9.85	43.07	0.33	0.00	0.00	23.87	6.68	
PHF		69	9%			0	%			83	3%			82	2%		87%
FIII	0%	0%	50%	67%	0%	0%	0%	0%	0%	70%	85%	50%	0%	0%	83%	77%	
P/Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cars	0	0	27	67	0	0	0	0	0	53	257	2	0	0	139	37	582
Single Unit Trucks	0	0	3	0	0	0	0	0	0	6	1	0	0	0	4	3	17
Combination Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P/Cycle (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cars (%)	0.00	0.00	90.00	100.00	0.00	0.00	0.00	0.00	0.00	89.83	99.61	100.00	0.00	0.00	97.20	92.50	97.16
Single Unit Trucks (%)	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	10.17	0.39	0.00	0.00	0.00	2.80	7.50	2.84
Combination Trucks (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

1409 Turnham Lane Birmingham, AL 35216 205-824-0125

Birmingham, AL

File Name : 280hwy17 Site Code : 00000000 Start Date : 11/28/2018 Page No : 1

				s Printed- Unshifte	Group		
		US 280	RD	ROCKY RIDGE		US 280	
		Eastbound		Northbound	d	Westbound	
Int. Tota	Right	Thru	Right	Left	Thru	Left	Start Time
181	34	508	34	116	1072	46	07:00 AM
197	47	649	28	94	1092	64	07:15 AM
197	37	756	41	131	940	67	07:30 AM
214	51	915	44	122	919	95	07:45 AM
790	169	2828	147	463	4023	272	Total
189	59	700	51	115	916	52	20.00 414
182	59	645	46	121	911		08:00 AM
173	35	557	47			38	08:15 AM
170	53	606	39	110	937	49	08:30 AM
714	206			91	870	41	08:45 AM
7.14	200	2508	183	437	3634	180	Total
159	74	716	69	50	627	54	1100 000
156	64	731	71	63	559	78	11:00 AM
173	65	852	59	82	596	79	11:15 AM
189	77	913	56	77	715	59	11:30 AM
678	280	3212	255	272	2497	270	11:45 AM Total
			200	212	2437	270	lotai
165	78	772	46	40	643	71	12:00 PM
168	70	768	65	70	641	67	12:15 PM
163	64	728	62	75	643	62	12:30 PM
172	58	735	54	71	730	74	12:45 PM
668	270	3003	227	256	2657	274	Total
211	106	1099	68	84	661	92	04:00 PM
222	191	1033	100	105	710	88	04:15 PM
202	138	956	79	78	684	90	04:30 PM
232	149	1217	57	89	744	70	04:45 PM
868	584	4305	304	356	2799	340	Total
227	191	1135	59	66	723	96	05:00 PM
241	262	1187	83	94	692	94	05:15 PM
217	179	1098	57	63	675	101	05:30 PM
228	193	1316	60	55	587	71	05:45 PM
913	825	4736	259	278	2677	362	Total
4634	2334	20592	1375	2062	18287	1698	Grand Total
	10.2	89.8	40.0	60.0	91.5	8.5	Apprch %
	5.0	44.4	3.0	4.4	39.5	3.7	Total %

			v	US 280 /estbour				CY RIDG			US 280 Eastbound	d	
Start Time	App. Tot	tal	Left	Thru	App.	Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 07:0	O AM to O	8:45	AM - Peak	1 of 1									
Intersection	07:15 AN	1											
Volume		0	278	3867		4145	462	164	626	3020	194	3214	7985
Percent		1	6.7	93.3			73.8	26.2		94.0	6.0		
07:45 Volume		0	95	919		1014	122	44	166	915	51	966	2146
Peak Factor													0.930
High Int.	6:45:00 AM		07:15 AM				07:30 AM			07:45 AM			
Volume Peak Factor		0	64	1092		1156 0.896	131	41	172 0.910	915	51	966 0.832	

1409 Turnham Lane Birmingham, AL 35216 **205-824-0125**

File Name : 280hwy17 Site Code : 00000000 Start Date : 11/28/2018 Page No : 2

		V	US 280 Vestboun	d		(Y RIDG orthboun			US 280 Eastbourn		
Start Time	App. Total	Left	Thru	App. Total	Left		App. Total	Thru	Right	App. Total	Int. Tota
Peak Hour From 07:0	0 AM to 08:4		1 of 1								
By Approach		07:00 AM	19 A. A.		07:30 AM			07:30 AM			
Volume	0	272	4023	4295	489	182	671	3016	206	3222	
Percent		6.3	93.7		72.9	27.1		93.6	6.4		
High Int.	-	07:15 AM			07:30 AM			07:45 AM			
Volume	04	64	1092	1156	131	41	172	915	51	966	
Peak Factor				0.929			0.975			0.834	
Peak Hour From 11:0	0 AM to 12:4	5 PM - Peak	1 of 1								
Intersection		1			1				-		
Volume	0	276	2595	2871	269	226	495	3305	290	3595	696
Percent		9.6	90.4		54.3	45.7		91.9	8.1		
11:45 Volume	0	59	715	774	77	56	133	913	77	990	189
Peak Factor											0.917
High Int.		11:45 AM			11:30 AM			11:45 AM			
Volume	0	59	715	774	82	59	141	913	77	990	
Peak Factor				0.927			0.878			0.908	
Peak Hour From 11:0	00 AM to 12:4	15 PM - Peak	1 of 1		in a rate						
By Approach	11:00 AM	12:00 PM			11:00 AM	010		11:30 AM			
Volume	0	274	2657	2931	272	255	527	3305	290	3595	
Percent		9.3	90.7		51.6	48.4		91.9	8.1		
High Int.	-	12:45 PM			11:30 AM			11:45 AM		000	
Volume		74	730	804	82	59	141	913	77	990	
Peak Factor				0.911			0.934			0.908	
Peak Hour From 04:0		45 PM - Peak	1 of 1					1			1.00
Intersection			0004	3195	312	256	568	4637	781	5418	918
Volume	0		2834	3195	54.9	45.1	500	85.6	14.4	0410	0.0
Percent		11.3	88.7	700	94	45.1	177	1187	262	1449	241
05:15 Volume	0	94	692	786	94	00	177	1107	202	1440	0.952
Peak Factor		1						05:15 PM			0.002
High Int.		05:00 PM			05:15 PM	00	177	1187	262	1449	
Volume	0	96	723	819	94	83	177	1107	202	0.935	
Peak Factor				0.975			0.802			0.955	10
Peak Hour From 04:			(1 of 1		04:00 PM			05:00 PM			1
By Approach		04:15 PM	0004	0005	the second second second second	304	660	4736	825	5561	1
Volume	0		2861	3205			000	85.2	14.8	0001	
Percent		10.7	89.3		53.9	46.1			14.0		
High Int.		05:00 PM			04:15 PM	100	005	05:45 PM	193	1509	
Volume		96	723	819		100	205	1316	193	0.921	1.000
Peak Factor	-			0.978			0.805			0.921	1

1409 Turnham Lane Birmingham, AL 35216 205-824-0125

Vestavia Hills, AL

File Name : vestavia14 Site Code : 0000000 Start Date : 05/24/2012 Page No : 1

	: 1	ge No	Pag										
		MBIANA F	COLU		WY 31	Unshifted	Printed-1-	Groups F	1.65		IWY 31	Ĺ	
		astbound			rthbound		5	estbound			uthbound		
Int. Tota	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Start Time
967	90	23	9	217	196	36	208	49	19	3	94	23	07:00 AM
1141	111	18	8	239	243	68	203	84	9	5	134	19	07:15 AM
1262	166	19	29	229	195	119	158	92	11	9	212	23	07:30 AM
1371	148	24	32	224	212	124	201	97	19	9	259	22	07:45 AM
4741	515	84	78	909	846	347	770	322	58	26	699	87	Total
1213	113	6	18	197	188	123	218	98	30	12	185	25	08:00 AM
1115	115	14	13	175	225	98	163	67	30	5	191	19	08:15 AM
1077	95	21	12	210	177	64	191	84	24	8	170	21	08:30 AM
1005	108	21	9	145	152	63	204	63	29	6	184	21	08:45 AM
441(431	62	52	727	742	348	776	312	113	31	730	86	Total
1022	109	18	21	136	191	52	108	47	35	4	274	27	11:00 AM
1082	122	13	12	147	170	40	128	48	42	7	321	32	11:15 AM
1029	121	12	17	124	172	38	121	46	53	14	289	22	11:30 AM
1127	129	9	16	124	183	47	132	44	36	13	371	23	11:45 AM
4260	481	52	66	531	716	177	489	185	166	38	1255	104	Total
1187	153	15	34	155	221	48	110	46	41	11	324	29	12:00 PM
1209	135	7	16	146	212	92	114	52	38	8	348	41	12:15 PM
1384	122	13	20	172	241	67	194	47	40	3	439	26	12:30 PM
1226	121	16	12	172	181	55	166	45	39	11	380	28	12:45 PM
5006	531	51	82	645	855	262	584	190	158	33	1491	124	Total
1183	175	12	16	155	136	53	120	73	38	12	374	19	04:00 PM
1239	196	21	22	139	153	64	126	61	35	2	398	22	04:15 PM
1212	180	12	22	158	140	33	135	62	44	6	396	24	04:30 PM
1396	213	11	26	156	170	69	153	75	45	2	448	28	04:45 PM
5030	764	56	86	608	599	219	534	271	162	22	1616	93	Total
1459	202	27	24	224	175	30	184	73	35	3	455	27	05:00 PM
1388	208	21	25	203	146	46	173	69	32	10	435	20	05:15 PM
1508	185	12	24	143	230	75	262	78	27	7	444	21	05:30 PM
1484	173	16	38	198	169	62	239	76	30	16	449	18	05:45 PM
5839	768	76	111	768	720	213	858	296	124	36	1783	86	Total
29286	3490	381	475	4188	4478	1566	4011	1576	781	186	7574	580	Grand Total
	80.3	8.8	10.9	40.9 14.3	43.8	15.3	63.0 13.7	24.7	12.3	2.2 0.6	90.8	7.0 2.0	Apprch %
	11.9	1.3	1.6		15.3	5.3		5.4	2.7		25.9		Total %

			/Y 31					S			VY 31		(BIANA R	D	
		Sout	hbound			vves	tbound			ΝΟΠ	hbound			Easi	bound		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	_ Int.
				Total				Total				Total			5	Total	Total
Peak Hour From	m 07:00	AM to	08:45 A	M - Peak	(1 of 1												
Intersection	07:15	AM															
Volume	89	790	35	914	69	371	780	1220	434	838	889	2161	87	67	538	692	4987
Percent	9.7	86.4	3.8		5.7	30.4	63.9		20.1	38.8	41.1		12.6	9.7	77.7		
07:45	22	259	9	290	19	97	201	317	124	212	224	560	32	24	148	204	1371
Volume	22	200	5	230	13	31	201	517	124	212	227	500	52	24	140	204	10/1
Peak Factor																	0.909
High Int.	07:45	AM			08:00	AM			07:45	AM			07:30	AM			
Volume	22	259	9	290	30	98	218	346	124	212	224	560	29	19	166	214	
Peak Factor				0.788				0.882				0.965				0.808	

TRAFFIC DATA, LLC 1409 Turnham Lane

Birmingham, AL 35216 205-824-0125

File Name : vestavia14 Site Code : 0000000 Start Date : 05/24/2012 Page No : 2

			/Y 31 hbound				BRAMPS	6			VY 31 hbound		(BIANA R	D	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	n 07:00	AM to	08:45 A		(1 of 1	1	L				L						1
By	07:30				07:45	АМ			07:15	AM			07:30	AM			
Volume	89	847	35	971	103	346	773	1222	434	838	889	2161	92	63	542	697	
Percent	9.2	87.2	3.6		8.4	28.3	63.3		20.1	38.8	41.1		13.2	9.0	77.8		
High Int.	07:45	AM			08:00	AM			07:45	AM			07:30				
Volume	22	259	9	290	30	98	218	346	124	212	224	560	29	19	166	214	
Peak Factor				0.837				0.883				0.965				0.814	
Peak Hour From Intersection	n 11:00 12:00		12:45 P	M - Peal	c 1 of 1				ł				I				1
Volume	124	1491	33	1648	158	190	584	932	262	855	645	1762	82	51	531	664	5006
Percent	7.5	90.5	2.0	1040	17.0	20.4	62.7	002	14.9	48.5	36.6		12.3	7.7	80.0		
12:30												400		40	400	455	4004
Volume	26	439	3	468	40	47	194	281	67	241	172	480	20	13	122	155	1384
Peak Factor					10.00	-			40.00	-			40.00				0.904
	12:30		•	400	12:30		404	004	12:30 67		172	480	12:00 34	PINI 15	153	202	
Volume	26	439	3	468	40	47	194	281 0.829	67	241	172	460 0.918	54	15	155	0.822	
Peak Factor				0.880				0.029	1			0.910	1			0.022	I
Peak Hour From	n 11:00) AM to	12:45 P	M - Peal	k 1 of 1				1				1				I
By	12:00	РМ			12:00	РМ			12:00	PM			11:45	AM			
Approach Volume	124	1491	33	1648	158	190	584	932	262	855	645	1762	86	44	539	669	
Percent	7.5	90.5	2.0	1040	17.0	20.4	62.7	UUL	14.9	48.5	36.6		12.9	6.6	80.6		
	12:30		2.0		12:30				12:30				12:00	PM			
Volume	26	439	3	468	40	47	194	281	67	241	172	480	34	15	153	202	
Peak Factor				0.880				0.829				0.918				0.828	
Peak Hour From			05:45 P	M - Peal	k 1 of 1				1				I				I
Intersection Volume	05:00 86	РМ 1783	36	1905	124	296	858	1278	213	720	768	1701	111	76	768	955	5839
Percent	4.5	93.6	1.9	1905	9.7	23.2	67.1	1270	12.5	42.3	45.1	1701	11.6	8.0	80.4	300	5005
05:30	21	444	7	472	27	78	262	367	75	230	143	448	24	12	185	221	1508
Volume Deck Easter																	0.968
Peak Factor High Int.	05:00	DM			05:30	DM			05:30	DM			05:15	DM			0.900
Volume	27	455	3	485	27	78	262	367	75	230	143	448	25	21	208	254	
Peak Factor	21	400	5	0.982	21	70	202	0.871	10	200	140	0.949		21	200	0.940	
					Į			0.07 1	I			0.040				0.010	I
Peak Hour From By			05:45 P	M - Peal	1				1				1				1
Approach	05:00	PM			05:00	РМ			05:00	PM			04:45	РМ			
Volume	86	1783	36	1905	124	296	858	1278	213	720	768	1701	99	71	808	978	
Percent	4.5	93.6	1.9		9.7	23.2	67.1		12.5	42.3	45.1		10.1	7.3	82.6		
					05:30				05:30				05:15	PM			
High Int.	05:00	PM			05.30	L_ IAI			100.00				00.10	1 141			
High Int. Volume	05:00 27	PM 455	3	485	27	78	262	367 0.871	75	230	143	448 0.949	25	21	208	254 0.963	

1409 Turnham Lane Birmingham, AL 35216 **205-824-0125**

Vestavia Hills, AL

File Name : vestavia01 Site Code : 00000000 Start Date : 05/23/2012 Page No : 1

<u>_</u>		HW	/ 31		SHADE	Groups	Printed-	Unshifte	d HWY	<u>Y 31</u>		SHAD	ES CRES	TRD	
		Southt				estbound			Northt				astbound		
Start Time	Left	Thru	Right	uturn	Left	Thru	Right	Left	Thru	Right	uturn	Left	Thru	Right	Int. Total
07:00 AM	7	111	6	0	21	6	62	4	369	19	0	36	4	3	648
07:15 AM	6	158	8	ŏ	33	21	54	10	495	16	0	55	5	2	863
07:30 AM	9	157	6	ŏ	32	13	65	8	477	34	0	78	12	4	895
07:45 AM	17	172	8	õ	46	14	84	7	478	28	0	90	16	4	964
Total	39	598	28	0	132	54	265	29	1819	97	0	259	37	13	3370
08:00 AM	12	214	12	0	39	11	58	4	512	32	0	79	13	4	990
08:15 AM	17	167	9	0	28	12	69	5	466	22	0	55	4	4	858
08:30 AM	16	219	10	0	20	9	51	7	388	16	0	40	16	5	797
08:45 AM	18	192	11	0	27	10	26	6	297	29	1	43	17	5	682
Total	63	792	42	0	114	42	204	22	1663	99	1	217	50	18	3327
11:00 AM	18	296	17	0	20	5	7	5	232	26	0	10	9	5	650
11:15 AM	25	331	14	0	39	11	8	10	305	29	0	16	3	8	799
11:30 AM	17	399	14	0	33	6	12	7	270	34	0	12	6	7	817
11:45 AM	20	339	25	0	33	13	10	3	336	25	0	6	11	15	836
Total	80	1365	70	0	125	35	37	25	1143	114	0	44	29	35	3102
12:00 PM	23	355	19	1	32	4	13	7	262	47	0	12	11	14	800
12:15 PM	18	332	19	3	29	13	20	3	276	34	0	18	15	11	791
12:30 PM	19	295	23	1	29	16	28	6	333	36	1	13	9	10	819
12:45 PM	29	273	17	2	43	19	25	12	321	42	1	25	4	12	825
Total	89	1255	78	7	133	52	86	28	1192	159	2	68	39	47	3235
04:00 PM	29	419	60	1	21	8	9	13	215	44	0	13	12	3	847
04:15 PM	32	458	61	1	37	10	3	10	299	31	0	9	12	3	966
04:30 PM	42	479	72	0	32	11	7	10	220	29	0	18	16	9	945
04:45 PM	57	490	83	1	37	8	11	5	242	43	0	8	22	7	1014
Total	160	1846	276	3	127	37	30	38	976	147	0	48	62	22	3772
05:00 PM	62	484	80	0	42	22	14	12	269	54	1	19	18	11	1088
05:15 PM	70	531	95	1	29	22	25	6	257	37	1	26	25	14	1139
05:30 PM	55	497	61	0	45	19	20	11	189	46	1	12	16	7	979
05:45 PM	46	453	79	1	50	22	16	11	233	33	1	14	18	17	994
Total	233	1965	315	2	166	85	75	40	948	170	4	71	77	49	4200
Grand Total	664	7821	809	12	797	305	697	182	7741	786	7	707	294	184	21006
Apprch %	7.1	84.0	8.7	0.1	44.3	17.0	38.7	2.1	88.8	9.0	0.1	59.7	24.8	15.5	
Total %	3.2	37.2	3.9	0.1	3.8	1.5	3.3	0.9	36.9	3.7	0.0	3.4	1.4	0.9	

			HWY 3	1		SH	ADES	CREST	r RD			HWY 3	31		SH	ADES	CREST	RD	
		S	outhbo	und			West	bound			N	orthboi	und			East	bound		
Start Time	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Int. Total
Peak Hour Fr	om 07:	00 AM	to 08:4	5 AM ·	Peak 1	of 1													
Intersectio n	07:15	AM																	
Volume	44	701	34	0	779	150	59	261	470	29	196 2	110	0	2101	302	46	14	362	3712
Percent	5.6	90.0	4.4	0.0		31.9	12.6	55.5		1.4	93.4	5.2	0.0		83.4	12.7	3.9		
08:00 Volume	12	214	12	0	238	39	11	58	108	4	512	32	0	548	79	13	4	96	990
Peak Factor																			0.937
High Int.	08:00	AM				07:45	AM			08:00	AM				07:45	AM			
Volume	12	214	12	0	238	46	14	84	144	4	512	32	0	548	90	16	4	110	

Peak Factor					0.818				0.816					0.958				0.823	
Peak Hour Fr	0m 07.		to OR-4	5 AM	. Peak 1	of 1			I					I				,	
By Approach	08:00		10 00.4		- r cak i	07:30	АМ			07:15	АМ				07:30	AM			
Volume	63	792	42	0	897	145	50	276	471	29	196 2	110	0	2101	302	45	16	363	
Percent	7.0	88.3	4.7	0.0			10.6	58.6		1.4 08:00	93.4	5.2	0.0		83.2 07:45		4.4		
High Int. Volume Peak	08:30 16	219	10	0	245	07:45 46	14	84	144	4	512	32	0	548	90	16	4	110	
Factor					0.915				0.818					0.958				0.825	
Peak Hour Fr Intersectio	om 11: 11:15		to 12:4	5 PM ·	- Peak 1	of 1													
n Volume	85	142	72	1	1582	137	34	43	214	27	117 3	135	0	1335	46	31	44	121	3252
Percent	5.4	4 90.0	4.6	0.1		64.0	15.9	20.1		2.0	3 87.9	10.1	0.0		38.0	25.6	36.4		
11:45 Volume Peak	20	339	25	0	384	33	13	10	56	3	336	25	0	364	6	11	15	32	836 0.972
Factor										44.45					40.00				0.012
High Int. Volume	11:30 17	AM 399	14	0	430	11:15 39	АМ 11	8	58	11:45 3	АМ 336	25	0	364	12:00 12	РМ 11	14	37	
Peak Factor					0.920				0.922					0.917				0.818	
Peak Hour Fi	rom 11:	00 AM	to 12:4	5 PM	- Peak 1	of 1				I					1				1
By Approach	11:30	AM				12:00	РМ			12:00	PM				12:00	PM			
Volume	78	142 5	77	4	1584	133	52	86	271	28	119 2	159	2	1381	68	39	47	154	
Percent High Int.	4.9 11:30	90.0	4.9	0.3		49.1 12:45	19.2 PM	31.7		2.0 12:30	86.3	11.5	0.1		44.2 12:15	25.3 PM	30.5		
Volume Peak	17		14	0	430	43	19	25	87	6	333	36	1	376	18	15	11	44	
Factor					0.921				0.779					0.918				0.875	
Peak Hour Fintersectio	rom 04: 04:45		to 05:4	15 PM -	- Peak 1	of 1													
n Volume	244	200	319	2	2567	153	71	70	294	34	957	180	3	1174	65	81	39	185	4220
Percent		2 78.0	12.4	0.1		52.0	24.1	23.8		2.9	81.5	15.3	0.3		35.1	43.8	21.1		
05:15 Volume Peak	70	531	95	1	697	29	22	25	76	6	257	37	1	301	26	25	14	65	1139 0.926
	05.45					05.20				05.00	DM				05:15	DM			0.020
Factor	0515	PM 521	95	1	697	05:30 45	PM 19	20	84	05:00 12	269	54	1	336	26	25	14	65	
Factor High Int. Volume	70	551							0.875					0.874				0.712	
High Int.		551			0.921					l					I				
High Int. Volume Peak	70		to 05:4	15 PM		of 1				1									
High Int. Volume Peak Factor Peak Hour F By	70	00 PM	to 05:4	15 PM		of 1 05:00	PM			04:15	РМ				05:00	PM			
High Int. Volume Peak Factor Peak Hour F By Approach	70 rom 04: 04:45	00 PM PM 200	to 05:4 319	15 PM 2		1	PM 85	75	326	04:15	103	157	1	1225	05:00) PM 77	49	197	
High Int. Volume Peak Factor Peak Hour F By Approach Volume Percent	70 rom 04: 04:45 244 9.5	00 PM PM 200 2 78.0			- Peak 1	05:00 166 50.9	85 26.1	75 23.0		37 3.0	103 0 84.1	157 12.8	1 0.1	1225	71 36.0	77 39.1		197	
High Int. Volume Peak Factor Peak Hour F By Approach Volume	70 rom 04: 04:45 244 9.5 05:15	00 PM PM 200 2 78.0	319	2	- Peak 1	05:00 166	85 26.1			37	103 0 84.1			1225 340	71	77 39.1		197 65	

1409 Turnham Lane Birmingham, AL 35216 **205-824-0125**

Vestavia Hills, AL

File Name : vestavia05 Site Code : 00000000 Start Date : 05/17/2012 Page No : 1

07.05 AM 1 163 3 1		~~						ł	Inshifted	Printed-	Groups						
Start Time Left Thru Right uturn Left								HWY		FRL	CREEK	-					
OT:00 AM 1 1 1 1 1 1 2 388 5 0 15 0 6 5 O7:15 AM 1 181 8 0 1 0 6 3 464 6 0 19 1 9 6 O7:15 AM 2 26 0 6 6 10 7 492 11 0 22 3 20 8 O7:45 AM 2 271 8 0 5 2 2 13 461 21 0 30 1 14 8 O8:00 AM 3 185 6 0 4 0 3 6 452 17 0 12 1 8 6 O8:00 AM 3 185 6 0 4 0 3 6 452 17 0 12 1 8 6 O8:05 AM 6 1		1													Southt		
07.05 AM 1 160 0 1		Int.									L			Right		Left	
07.19 AM 3 262 6 0 6 6 10 7 492 11 0 22 3 20 8 07:45 AM 2 271 8 0 5 2 2 13 461 21 0 30 1 14 6 07:45 AM 2 271 8 0 5 2 2 13 461 21 0 30 1 14 6 08:00 AM 3 185 6 0 4 0 3 6 452 17 0 12 1 8 6 08:00 AM 6 165 7 0 1 1 1 2 301 5 1 15 0 3 5 08:30 AM 6 165 7 0 1 1 1 2 301 5 1 17 24 08:45 AM 6 170 5 0 5 5 335 10 1 16 0 17<	526					-						-	- 1	-		-	
07.30 AM 2 202 0 0 0 5 2 2 13 461 21 0 30 1 14 6 07.45 AM 2 271 8 0 13 9 19 25 1805 43 0 86 5 49 25 08:00 AM 3 185 6 0 4 0 3 6 452 17 0 12 1 8 6 08:15 AM 2 197 5 0 2 1 4 9 437 13 0 13 0 5 6 6 6 1 1 1 2 301 5 1 15 0 3 5 6 6 6 1 1 1 1 2 30 13 0 5 5 335 10 1 16 0 1 5 6 1 17 24 16 1 17 24 1 17 24 1 17	699						-										
Or.4.5 AM 2 21 0 0 0 0 0 0 11 10 10 11 10 10 11 10 10 10 11 10 10 10 11 10 10 11 10 <th< td=""><td>848</td><td></td><td></td><td>-</td><td></td><td>- 1</td><td></td><td></td><td></td><td> 1</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>3</td><td>07:30 AM</td></th<>	848			-		- 1				1	-	-	-		-	3	07:30 AM
08:00 AM 3 185 6 0 4 0 3 6 452 17 0 12 1 8 6 08:05 AM 2 197 5 0 2 1 4 9 437 13 0 13 0 5 6 6 08:05 AM 6 165 7 0 1 1 1 2 301 5 1 15 0 3 6 452 17 0 12 1 8 6 6 6 6 6 6 6 6 6 6 6 6 7 0 1 1 1 2 301 5 1 15 0 3 5 335 10 1 16 0 1 7 24 11:00 AM 4 266 6 1 3 0 3 1 266 1 17 24 11:15 AM 8 319 9 2 7 3 5 3 <	830											-					07:45 AM
00.00 MM 2 197 5 0 2 1 4 9 437 13 0 13 0 5 6 08:15 AM 6 165 7 0 1 1 1 2 301 5 1 15 0 3 5 08:30 AM 6 170 5 0 5 0 5 5 335 10 1 16 0 1 5 08:45 AM 6 170 5 0 5 0 5 5 335 10 1 16 0 1 5 Total 17 717 23 0 12 2 13 22 1525 45 2 56 1 17 24 11:00 AM 4 266 6 1 3 0 3 1 266 11 2 12 3 6 2 6 6 1 17 24 11:15 AM 8 319 9 2 7	2903	1	49	5	86	0	43	1805	25	19	9	13	0	28	814	7	Total
08:30 AM 6 165 7 0 1 1 1 2 301 5 1 15 0 3 45 08:30 AM 6 170 5 0 5 0 5 5 335 10 1 16 0 1 45 08:45 AM 6 170 5 0 5 0 5 5 335 10 1 16 0 1 45 Total 17 717 23 0 12 2 13 22 1525 45 2 56 1 17 24 11:00 AM 4 266 6 1 3 0 3 1 266 11 2 12 3 6 2 56 1 17 24 11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 6 6 6 6 6 6 6 6 <	697					-					-		-				
08:45 AM 6 170 5 0 5 0 5 0 1 1 1 1 16 0 1 15 1 16 0 1 15 1 16 0 1 15 1 16 0 1 15 1 16 0 1 15 1 16 0 1 15 1 17 17 17 23 0 12 2 13 22 1525 45 2 56 1 17 24 11:00 AM 4 266 6 1 3 0 3 1 266 11 2 12 3 6 2 6 11 17 24 11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 11 10 11 15 5 11 10 11 10 11 10 11 10 11 10 11 10	688					-					-		- 1			2	08:15 AM
11:00 AM 4 266 6 1 3 0 3 1 266 11 2 17 17 23 0 12 2 13 22 1525 45 2 56 1 17 24 11:00 AM 4 266 6 1 3 0 3 1 266 11 2 12 3 6 2 6 6 11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 3 5 3 252 11 3 6 2 5 6 6 6 6 6 7 11 1 1 5 6 6 7 7 7 7	508			-	-	- 1	-		_	- 1	-		- 1		165	6	
11:00 AM 4 266 6 1 3 0 3 1 266 11 2 12 3 6 2 6 6 11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 11:30 AM 9 329 7 0 6 0 4 3 287 9 0 11 1 5 6 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 3 2 3	559								-								
11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 6 11:30 AM 9 329 7 0 6 0 4 3 287 9 0 11 1 5 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 3 2 3 2 281 11 1 12 1 4 6 6 6 6 6 6 6 6 6 6 7 1 12	2452		17	1	56	2	45	1525	22	13	2	12	0	23	717	17	Total
11:15 AM 8 319 9 2 7 3 5 3 252 11 3 6 2 6 6 11:30 AM 9 329 7 0 6 0 4 3 287 9 0 11 1 5 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 3 2 3 2 281 11 1 12 1 4 6 6 6 6 6 6 6 6 6 6 6 3 5	584		6	3	12	2	11	266	1	3	0	3	1	6	266	А	11·00 AM
11:30 AM 9 329 7 0 6 0 4 3 287 9 0 11 1 5 6 11:30 AM 9 329 7 0 6 0 4 3 287 9 0 11 1 5 6 11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 3 2 3 2 281 11 1 12 1 4 6 12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:30 PM 11 303 9 4 7 2 6 3 354 7 </td <td>636</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	636												1				
11:45 AM 14 345 11 3 6 0 5 2 287 12 0 5 2 5 6 Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 2 3 2 3 2 281 11 1 12 1 4 6 12:00 PM 7 340 12 3 2 3 2 3 2 281 11 1 12 1 4 6 12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:30 PM 11 330 9 4 7 2 6 3 354 7 1 13 1 1 12:45 PM 12 303 4 0 3 8 290 12 <th< td=""><td>671</td><td></td><td>5</td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>	671		5		11											-	
Total 35 1259 33 6 22 3 17 9 1092 43 5 34 8 22 25 12:00 PM 7 340 12 3 3 2 3 2 281 11 1 12 1 4 6 12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:30 PM 11 330 9 4 7 2 6 3 354 7 1 13 1	697		5	2	5	0	12					-				-	
12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:30 PM 11 330 9 4 7 2 6 3 354 7 1 13 1 1 12:45 PM 12 303 4 0 4 0 3 8 290 12 1 8 3 4 0	2588		22		34	5	43										
12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:15 PM 8 311 12 1 4 1 3 5 242 13 0 12 1 5 6 12:30 PM 11 330 9 4 7 2 6 3 354 7 1 13 1 1 12:45 PM 12 303 4 0 4 0 3 8 290 12 1 8 3 4 0	682	1	4	1	12	1	11	281	2	3	2	3	3	12	340	7	12:00 PM
12:30 PM 11 330 9 4 7 2 6 3 354 7 1 13 1 1 12:45 PM 12 303 4 0 4 0 3 8 290 12 1 8 3 4	618												1				
12:45 PM 12 303 4 0 4 0 3 8 290 12 1 8 3 4 6	749		-	1		-				-		-				-	
	652			3		- 1								-			
	2701		14	6	45	3	43					-					
04:00 PM 8 413 13 1 4 1 2 6 232 8 0 9 1 6	704	1	6	1	0		0	222	6	2	4			10	440		
	791	ļ		-										-			
	775				-		-					-					
	822					-			-	-		-					
	3092			-													
	044	i i	-		-				•								
	814 840			-						1							
	840 762			-					-				1	-	+		
	789		-	-		-											
	3205			•							-						
			20	U	30	3	32	1054	20	10	10	17	Z	88	1991	26	Iotal
	6941	1															
Apprch % 2.0 94.4 3.4 0.2 42.9 15.9 41.2 1.5 95.2 3.1 0.2 63.5 7.0 29.5		1				1											
Total % 1.0 45.4 1.6 0.1 0.6 0.2 0.6 0.7 45.3 1.5 0.1 1.8 0.2 0.9			0.9	0.2	1.8	0.1	1.5	45.3	0.7	0.6	0.2	0.6	0.1	1.6	45.4	1.0	Total %

			HWY 3 outhbol			0		EEK T	RL			HWY 3 orthbou			0		EEK TI	RL	
Start Time	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Int. Total
Peak Hour Fr	om 07:	00 AM	to 08:4	5 AM	Peak 1	of 1		L				I I				•		•	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Intersectio n	07:15	AM																	
Volume	9	899	28	0	936	16	8	21	45	29	186 9	55	0	1953	83	6	51	140	3074
Percent	1.0	96.0	3.0	0.0		35.6	17.8	46.7		1.5	95.7	2.8	0.0		59.3	4.3	36.4		
07:30 Volume	3	262	6	0	271	6	6	10	22	7	492	11	0	510	22	3	20	45	848
Peak Factor																			0.906
High Int.	07:45	AM				07:30	AM			07:30	AM				07:30	AM			
Volume	2	271	8	0	281	6	6	10	22	7	492	11	0	510	22	3	20	45	

Peak Factor		•.			0.833				0.511					0.957				0.778	
Peak Hour Fr	om 07:	00 AM	to 08:4	5 AM ·	- Peak 1	of 1													
By Approach	07:30	AM				07:15	AM			07:15					07:00	AM			
Volume	10	915	25	0	950	16	8	21	45	29	186 9	55	0	1953	86	5	49	140	
Percent	1.1	96.3	2.6	0.0		35.6	17.8	46.7			95.7	2.8	0.0		61.4	3.6	35.0		
High Int.			•	•	204	07:30 6		10	22	07:30 7	AM 492	11	0	510	07:30 22	AM 3	20	45	
Volume Peak	2	271	8	0	281	0	6	10		1	492	11	U		22	0	20	0.778	- - -
Factor					0.845				0.511					0.957				0.770	
Peak Hour Fr	om 11 [.]	00 AM	to 12·4	5 PM	- Peak 1	of 1													
Intersectio	11:45																		
n		132					_				116			4004		-	45		0740
Volume	40	6	44	11	1421	20	5	17	42	12	4	43	2	1221	42	5	15	62	2746
Percent 12:30	2.8	93.3	3.1	0.8		47.6	11.9	40.5		1.0	95.3	3.5	0.2		67.7	8.1	24.2		_
Volume	11	330	9	4	354	7	2	6	15	3	354	7	1	365	13	1	1	15	749
Peak						Ì													0.917
Factor High Int.	11:45	AM				12:30	РМ			12:30	PM				12:15	РМ			
Volume	14	345	11	3	373	7	2	6	15	3	354	7	1	365	12	1	5	18	
Peak Factor					0.952				0.700					0.836				0.861	
						I				1									I
Peak Hour Fr By			to 12:4	5 PM	- Peak 1	1				1									
Approach	11:45	AM				11:15	AM			12:00	PM				12:00	PM			
Volume	40	132 6	44	11	1421	22	5	17	44	18	116 7	43	3	1231	45	6	14	65	
Percent	2.8	93.3	3.1	0.8		50.0	11.4	38.6		1.5	94.8	3.5	0.2		69.2	9.2	21.5		
High Int.	11:45 14	6 AM 345	11	3	373	11:15	AM 3	5	15	12:30 3	PM 354	7	1	365	12:15 12	PM 1	5	18	
Volume Peak	14	345		3		'	5	5	0.733	5	004	'	•	0.843	12	'	5	0.903	
Factor					0.952				0.733					0.043				0.903	
Peak Hour Fr	om 04:	:00 PM	to 05:4	5 PM	- Peak 1	of 1													
Intersectio	04:30	PM																	
n Maluma		185	84		4074	25	16	23	64	22	105	47	4	1129	53	12	22	87	3251
Volume	29	7		1	1971				04		9		0.1	1129	60.9	13.8	25.3	07	0201
Percent 05:15	1.5		4.3	0.1	54.4	39.1	25.0	35.9	40	1.9	93.8	4.2	0.1	007				20	040
Volume	5	489	20	0	514	4	6	3	13	6	270	11	0	287	12	4	10	26	840
Peak Factor																			0.968
High Int.						04:30				04:45					04:45		_		
Volume Peak	5	489	20	0	514	8	5	9	22	5	269	17	1	292	20	5	2	27	
Factor					0.959				0.727					0.967				0.806	
Peak Hour Fr			to 05·4	5 DM	- Poak 1	of 1													
Ву	04:45		10 00.4		-reak i	04:30	DM			04:15	DM				04:30	DM			
Approach	04.40					04.30					107								
Volume	30	186 8	84	2	1984	25	16	23	64	22	0	42	2	1136	53	12	22	87	
Percent High Int.		94.2	4.2	0.1		39.1 04:30	25.0	35.9		1.9 04:15	94.2 PM	3.7	0.2		60.9 04:45		25.3		
Volume		489	20	0	514	04:30	5	9	22	6		6	1	294	20	5	2	27	
Peak					0.965				0.727					0.966				0.806	
Factor						I				I					I				1

1409 Turnham Lane Birmingham, AL 35216 205-824-0125

Vestavia Hills, AL

File Name : vestavia06 Site Code : 0000000 Start Date : 05/17/2012 Page No : 1

												. «ge		• •	
						Groups	Printed-	Unshifte	<u>d</u>			1/507	AVIA HI	110	1
		HWY	' 31			TUESD	AY'S		HW	Y 31				LLO	
		Southb			-	CCESS	.		Northt				PLAZA		
-						estbound		1 - 64					astbound Thru	Right	Int. Total
Start Time	Left	Thru	Right	uturn	Left	Thru	Right	Left	Thru 422	Right	uturn 0	Left 0	0	rtight 0	531
07:00 AM	2	103	0	0	0	0	0	1		3 2	0	0	0	0	674
07:15 AM	1	191	0	0	4	0	0	1	475		0	0	0	0	777
07:30 AM	1	284	1	0	1	1	0	0	487	2	0	-	1	0	829
07:45 AM	2	312	1	0	4	0	0	1	502	5	-	<u> </u>	1	0	2811
Total	6	890	2	0	9	1	0	3	1886	12	0	1	I	U	2011
08:00 AM	1	197	0	0	2	0	0	2	490	5	0	1	0	1	699
08:15 AM	2	194	1	0	4	0	0	2	433	7	0	4	0	1	648
08:30 AM	1	161	0	0	3	0	0	6	309	5	1	0	0	0	486
08:45 AM	4	151	6	0	4	1	1	8	355	15	1	6	0	1	553
Total	8	703	7	0	13	1	1	18	1587	32	2	11	0	3	2386
											- 1	_			500
11:00 AM	8	252	4	1	21	1	0	13	276	12	0	5	1	4	598
11:15 AM	17	306	12	1	8	0	1	5	287	17	1	4	0	1	660
11:30 AM	9	308	6	2	16	1	2	20	297	14	0	8	0	1	684
11:45 AM	9	356	7	1	18	1	2	6	320	15	0	4	0	4	743
Total	43	1222	29	5	63	3	5	44	1180	58	1	21	1	10	2685
12:00 PM	11	285	8	1	16	1	5	11	244	4	0	8	1	4	599
12:15 PM	11	300	8	3	13	1	0	6	273	14	0	4	1	9	643
12:30 PM	10	298	10	6	18	1	2	8	311	7	1	9	0	3	684
12:45 PM	6	309	6	0	8	1	1	7	312	11	0	4	1	5	671
Total	38	1192	32	10	55	4	8	32	1140	36	1	25	3	21	2597
					45	4		7	0.07	F	0	4	0	1	744
04:00 PM	4	429	6	2	15	1 0	3	7 7	267 252	5 2	1	4 7	0	3	744
04:15 PM	4	421	8	2	14		1		252 288	∠ 5	1	6	0	2	766
04:30 PM	4	430	4	0	19 19	2 1	0	5 5	200	5 10	1	4	0	2	772
04:45 PM	<u>5</u> 17	449	5 23	4	67	4	4	24	1078	22	3	21	0	8	3004
Total	17	1729	23	4	07	-4	4	24	1070	~~~	51	21	0	Ŭ	0004
05:00 PM	4	487	2	3	19	1	0	2	293	1	0	5	0	3	820
05:15 PM	6	464	5	3	16	0	0	4	297	4	0	2	0	4	805
05:30 PM	5	472	3	1	6	1	1	10	268	6	0	3	0	6	782
05:45 PM	3	417	4	2	9	0	1	7	270	7	0	8	2	3	733
Total	18	1840	14	9	50	2	2	23	1128	18	0	18	2	16	3140
Grand Total	130	7576	107	28	257	15	20	144	7999	178	7	97	7	58	16623
Apprch %	1.7	96.6	1.4	0.4	88.0	5.1	6.8	1.7	96.0	2.1	0.1	59.9	4.3	35.8	
	0.8	45.6	0.6	0.2	1.5	0.1	0.1	0.9	48.1	1.1	0.0	0.6	0.0	0.3	1

			HWY 3 outhbou			R	ACC	JESDA CESS tbound	Y'S			HWY 3 orthbou			VEST		HILLS F bound	PLAZA	
Start Time	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Int. Total
Peak Hour Fr	om 07:	00 AM	to 08:4	5 AM -	Peak 1	of 1													
Intersectio n	07:15	AM																	
Volume	5	984	2	0	991	11	1	0	12	4	195 4	14	0	1972	2	1	1	4	2979
Percent	0.5	99.3	0.2	0.0		91.7	8.3	0.0		0.2	99.1	0.7	0.0		50.0	25.0	25.0		
07:45 Volume Peak Factor	2	312	1	0	315	4	0	0	4	1	502	5	0	508	1	1	0	2	829 0.898

High Int. Volume Peak Factor		AM 312	1	0	315 0.787	07:157 4	АМ 0	0	4 0.750	07:45 1	AM 502	5	0	508 0.970	07:45 / 1	AM 1	0	2 0.500	
Peak Hour Fr By			to 08:4	5 AM -	Peak 1														
Approach	07:30	AM				08:00	۹M			07:15					08:00	АМ			
Volume	6	987	3	0	996	13	1	1	15	4	195 4	14	0	1972	11	0	3	14	
Percent High Int.	0.6		0.3	0.0		86.7 08:45 /	6.7	6.7		0.2 07:45	99.1	0.7	0.0		78.6 08:45	0.0 ΔM	21.4		
Volume	07.45		1	0	315	4	1	1	6	1		5	0	508	6	0	1	7	
Peak Factor					0.790				0.625					0.970				0.500	
		~ • • • •								I					I				
Peak Hour Fr Intersectio n	om 11: 11:15		to 12:4	5 PM ·	- Peak 1	of 1													
Volume	46	125 5	33	5	1339	58	3	10	71	42	114 8	50	1	1241	24	1	10	35	2686
Percent	3.4	5 93.7	2.5	0.4		81.7	4.2	14.1		3.4	92.5	4.0	0.1		68.6	2.9	28.6		
11:45 Votume	9	356	7	1	373	18	1	2	21	6	320	15	0	341	4	0	4	8	743
Peak																			0.904
Factor High Int.	11:45	АМ				12:00	РМ			11:45	AM				12:00	РM			
Volume	9	356	7	1	373	16	1	5	22	6	320	15	0	341	8	1	4	13	
Peak Factor					0.897				0.807					0.910				0.673	
Peak Hour Fr	om 11.	00 444	to 12.4	E DM	Book 1	of 1													
Реак поці гі Ву	11:15		10 12.4	5 111	- Peak I	11:45	Δ N A			11:00	ΔΜ				12:00	РM			
Approach	11.15					11.457													
Volume	46	125 5	33	5	1339	65	4	9	78	44	118 0	58	1	1283	25	3	21	49	
Percent High Int.	3.4 11:45	93.7 ΔМ	2.5	0.4		83.3 12:00	5.1 PM	11.5		3.4 11:45	92.0 AM	4.5	0.1		51.0 12:15	6.1 PM	42.9		
Volume	9	356	7	1	373	16	1	5	22	6	320	15	0	341	4	1	9	14	
Peak Factor					0.897				0.886					0.941				0.875	
	~ ~ ~									i					I				I
Peak Hour Fr Intersectio			to 05:4	5 PM ·	- Peak 1	of 1													
n	04:45										110								
Volume	20	187 2	15	7	1914	60	3	1	64	21	112 9	21	1	1172	14	0	15	29	3179
Percent 05:00	1.0		0.8	0.4		93.8	4.7	1.6		1.8	96.3	1.8	0.1		48.3	0.0	51.7		
Volume	4	487	2	3	496	19	1	0	20	2	293	1	0	296	5	0	3	8	820
Peak Factor																			0.969
High Int.						04:45				05:15				_	05:30				
Volume Peak	4	487	2	3	496	19	1	0	20	4	297	4	0	305	3	0	6	9	
Factor					0.965				0.800					0.961				0.806	
Peak Hour Fr	om 04:	00 PM	to 05:4	5 PM	- Peak 1	of 1													
Ву	04:45					04:30	РМ			04:30	PM				05:00	РМ			
Approach		187	45	-	1014			^		16	114	20	~	4407			10	26	
Volume	20	2	15	7	1914	73	4 5 2	0	77	l	9	20 1 7	2	1187	18	2	16	36	
Percent High Int.		97.8 PM	0.8	0.4		94.8 04:30	5.2 PM	0.0		1.3 05:15	96.8 PM	1.7	0.2		50.0 05:45		44.4		
Volume		487	2	3	496	19	2	0	21	4	297	4	0	305	8	2	3	13	
Peak Factor					0.965				0.917					0.973				0.692	

Vestavia Hills, AL

1409 Turnham Lane Birmingham, AL 35216 **205-824-0125**

File Name : vestavia11 Site Code : 00000000 Start Date : 05/15/2012 Page No : 1

			Ŭ				d- Unshi	ups Printe						
	STPL		/ESTAVI	1		HWY			ITZ DR			IWY 31	ŀ	
		stbound				Northbo			stbound			uthbound		
Int. Tota	Right	Thru	Left	uturn	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Start Time
760	6	2	3	2	21	258	9	36	3	45	4	348	23	04:00 PM
833	10	2	3	0	18	303	4	22	2	24	7	430	8	04:15 PM
787	11	0	2	1	26	293	6	15	1	14	1	406	11	04:30 PM
758	7	4	0	0	24	278	8	20	5	17	2	377	16	04:45 PM
3138	34	8	8	3	89	1132	27	93	11	100	14	1561	58	Total
782	7	1	1	3	28	315	13	27	2	30	4	338	13	05:00 PM
861	7	2	0	0	24	349	16	16	2	27	3	394	21	05:15 PM
720	3	1	2	2	22	297	8	11	0	22	2	343	7	05:30 PM
740	15	0	0	0	27	268	12	12	2	18	3	377	6	05:45 PM
3103	32	4	3	5	101	1229	49	66	6	97	12	1452	47	Total
599	19	3	1	1	25	386	8	17	0	15	0	108	16	07:00 AM
837	18	1	4	ŏ	23 56	443	7	55	Ő	41	1	181	30	07:15 AM
923	10	14	8	0	52	352	21	91	6	32	4	263	70	07:30 AM
937	21	17	8	0	51	317	13	84	8	45	5	289	70	07:45 AM
3296	68	35	21	1	184	1498	49	247	14	133	10	841	195	Total
								8			1			
758	8	8	6	0	26	389	4	41	6	44	1	202	23	08:00 AM
702	15	1	0	0	15	408	3	21	0	17	0	213	9	08:15 AM
519	12	0	0	1	10	265	1	12	1	8	2	200	7	08:30 AM
497	14	1	0	0	8	263	4	5	0	13	2	176	11	08:45 AM
2476	49	10	6	1	59	1325	12	79	7	82	5	791	50	Total
562	10	0	0	0	5	263	3	9	2	14	2	247	7	11:00 AM
681	7	0	2	1	19	307	11	14	1	5	0	305	9	11:15 AM
620	5	ŏ	1	ö	13	284	4	18	ö	12	Ő	275	8	11:30 AM
605	6	2	ò	1	15	278	13	14	Ő	11	1	253	11	11:45 AM
2468	28	2	3	2	52	1132	31	55	3	42	3	1080	35	Total
659	5	1	1	1	20	273	8	16	3	27	0	300	4	12:00 PM
697	8	ò	1	2	20	275	5	8	1	10	0	357	10	12:00 PM
673	8	0	2	0	9	311	4	12	0	10	0	301	14	12:30 PM
688	5	0	2	0	9 8	307	4 10	12	2	12	6	301	14	12:30 PM 12:45 PM
2717	26	1	4	3	46	1177	27	54	6	64	6	1261	42	Total
	007	60	45	45	504		405		47	540	50			Orand Tatal
17198	237	60	45	15	531	7493	195	594	47	518	50	6986	427	Grand Total
	69.3	17.5	13.2	0.2	6.4	91.0	2.4	51.3	4.1	44.7	0.7	93.6	5.7	Apprch %
	1.4	0.3	0.3	0.1	3.1	43.6	1.1	3.5	0.3	3.0	0.3	40.6	2.5	Total %

	HWY 31				PIZITZ DR				HWY 31					VESTAVIA FOREST PL				
	Southbound				Westbound				Northbound				Eastbound					
Start Time	Left	Thru	Righ	App.	Left	Thru	Righ	App.	Left	Thru	Righ	utur	App.	Left	Thru	Righ	App.	Int.
			t	Total			L L	Total			t	n	Total			t	Total	Total
Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1																		
Intersection	04:30	PM																
Volume	61	151 5	10	1586	88	10	78	176	43	123 5	102	4	1384	3	7	32	42	3188
Percent	3.8	95.5	0.6		50.0	5.7	44.3		3.1	89.2	7.4	0.3		7.1	16.7	76.2		
05:15 Volume	21	394	3	418	27	2	16	45	16	349	24	0	389	0	2	7	9	861
Peak Factor								(1				0.926
High Int.	04:30 PM			05		5:00 PM			05:15 PM				04:30 PM					
Volume	11	406	1	418	30	2	27	59	16	349	24	0	389	2	0	11	13	
Peak Factor				0.949				0.746					0.889				0.808	

TRAFFIC DATA, LLC 1409 Turnham Lane Birmingham, AL 35216 205-824-0125

File Name: vestavia11Site Code: 00000000Start Date: 05/15/2012Page No: 2

			/Y 31 hbound				TZ DR				HWY 3 orthbou			VES		FORES	ST PL	
Start Time	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	utur n	App. Total	Left	Thru	Righ t	App. Total	Int. Total
Peak Hour Fro	om 04:0	0 PM t	o 05:45	PM - Pe	ak 1 of	1								1	••••			
By Approach	04:00				04:00	PM			04:45					04:00	РМ			
Volume	58	156 1	14	1633	100	11	93	204	45	123 9	98	5	1387	8	8	34	50	
Percent High Int.	3.6 04:15	95.6 PM	0.9		49.0 04:00	5.4 PM	45.6		3.2 05:15	89.3 PM	7.1	0.4		16.0 04:15	16.0 PM	68.0		
Volume Peak Factor	8	430	7	445 0.917	45	3	36	84 0.607	16	349	24	0	389 0.891	3	2	10	15 0.833	
Peak Hour Fro			o 08:45		ak 1 of	1								1				F
Intersection										150								
Volume	202 17.6	935 81.4	11 1.0	1148	162 35.8	20 4.4	271 59.8	453	45 2.6	1 86.7	185 10.7	0 0.0	1731	26 21.1	40 32.5	57 46.3	123	3455
Percent 07:45	79	289	5	373	45	4.4 8	59.8 84	137	13	317	51	0.0	381	8	32.5 17	40.3 21	46	937
Volume Peak Factor																		0.922
High Int. Volume	07:45 79	AM 289	5	373	07:45 45	AM 8	84	137	07:15	AM 443	56	0	506	07:45	AM 17	21	46	
Peak Factor		200	U	0.769	10	Ŭ	01	0.827		110	00	Ŭ	0.855		.,		0.668	
Peak Hour Fro	om 07:0	0 AM t	o 08:45	AM - Pe	ak 1 of	1			1					1				
By Approach	07:30	AM			07:15	AM			07:00					07:00	AM			
Volume	181	967	10	1158	162	20	271	453	49	149 8	184	1	1732	21	35	68	124	
Percent High Int.	15.6 07:45	83.5 AM	0.9		35.8 07:45	4.4 AM	59.8		2.8 07:15	86.5 AM	10.6	0.1		16.9 07:45	28.2 AM	54.8		
Volume Peak Factor	79	289	5	373 0.776	45	8	84	137 0.827	7	443	56	0	506 0.856	8	17	21	46 0.674	
Peak Hour Fro	om 11:0	0 AM t	o 12:45	PM - Pe	ak 1 of	1												
Intersection		PM 126							1	117								1
Volume	42	1	6	1309	64	6	54	124	27	7	46	3	1253	4	1	26	31	2717
Percent 12:15	3.2 10	96.3 357	0.5 0	367	51.6 10	4.8 1	43.5 8	19	2.2 5	93.9 286	3.7 9	0.2 2	302	12.9 1	3.2 0	83.9 8	9	697
Volume Peak Factor			÷			•	Ū			200	U	-	002		Ū	Ũ		0.975
High Int. Volume	12:15 10	PM 357	0	367	12:00 27	PM 3	16	46	12:45 10	PM 307	8	0	325	12:30 2	PM 0	8	10	I
Peak Factor	10	007	Ū	0.892		5	10	0.674		507	0	U	0.964		0	0	0.775	
Peak Hour Fro	om 11:0	0 AM t	o 12:45	PM - Pe	ak 1 of	1							1	1				
By Approach	12:00				12:00	PM			12:00					11:45	АМ			
Volume	42	126 1	6	1309	64	6	54	124	27	117 7	46	3	1253	4	3	27	34	
Percent High Int.		96.3 PM	0.5	ĺ	51.6 12:00	4.8 PM	43.5		2.2 12:45	93.9 PM	3.7	0.2		11.8 12:30		79.4		
Volume Peak Factor	10	357	0	367 0.892	27	3	16	46 0.674	10	307	8	0	325 0.964	2	0	8	10 0.850	

Appendix B — Capacity Analysis Reports

ALABAMA DEPARTMENT OF TRANSPORTATION

Capacity Analysis for Planning of Roundabouts

©July 2015

Instructions for Use

This tool is designed to provide a quick guide in determining a suitable layout for a proposed roundabout at planning level. Four predetermined hierarchical layouts —namely, 1x1 Rndabt, 1NS x 2 EW Rndabt, 2 NS x 1 EW Rndabt and 2x2 Rndabt (See Notice for details) — are evaluated for their operational performances. The evaluation follows the procedures set in the Highway Capacity Manual (2010 HCM), *NCHRP* Report 672 and the ALDOT Roundabout Planning, Design and Operational Manual. Final selection of a suitable layout should be based on a balanced cost and operational efficiency. The configurations presented here may be used for planning purposes only. Further analysis may be needed to achieve optimum design configuration

Steps in using this tool:

Step 1: Go to the Input worksheet and fill in the required information located in the "Yellow" boxes.

Step 2: Go through the "Design Sheet" on the second page of each design worksheet and fill in the required information located in the "Yellow" boxes.

Step 3: Review the design on the "Result Sheet" located on the first page of each design worksheet and adjust the number of lanes (Right-turn Bypass lanes) for each approach where required.

Step 4: Go to the Output Worksheet and review the consolidated output of the different configurations.

Notes

1. Best practices suggest V/C ratio thresholds of between 0.85 and 0.90 for satisfactory performance of the roundabout during the design year. Higher degree of saturation (V/C > 0.85) may still perform acceptably in less critical areas (such as intersection with minor streets) where the impact of adding capacity exceeds benefit. More care may be appropriate in areas where queuing is more sensitive (e.g., closely spaced intersections, and interchange off-ramps).

2. Where a Type 2 Right-Turn Bypass lane (refer to ALDOT manual) is required, the analysis assumes zero delay and large capacity on the Bypass lane.

3. Projected Traffic Volume is the volume per day at the end of n years.

4. 1x1 Rndabt : refers to design geometry where one-lane entry conflicts with one-lane circulating lane.

5. 1NS x 2 EW Rndabt: refers to design geometry where one entry lane conflicts with two circulating lanes.

6. NS x 1 EW Rndabt: refers to design geometry where two entry lanes conflict with one circulating lanes.

7. 2x2 Rndabt : refers to design geometry where two entry lanes conflict with two circulating lanes.

8. Four SHADES OF GREEN are used to indicate different levels of acceptability of a particular performance measure; dark green indicates highly favorable and light green indicate less favorable.

9. Generally, a RED shaded cell indicate unacceptable performance measure.

10.Calibration Parameters for Capacity Equations: Refer to TABLE 2.3 in the ALDOT Roundabout Manual for values of Parameters A and B. Otherwise input site-specific values.

11. To reset the parameter values in the "Design Sheet" to their default values , simply delete the content of the cells

13. Single-lane: refers to model parameters for the single entry lane when one-lane entry conflicts with one-lane circulating lane

14 2x2, RT lane: refers to model parameters for the entry right lane when two entry lanes conflict with two circulating lanes

15. 2x2, LT lane: refers to model parameters for the entry left lane when two entry lanes conflict with two circulating lanes

16. 2x1, RT/LT lanes: refers to model parameters for each entry lane when two entry lanes conflict with one circulating lanes

17. 1x2, one lane: refers to model parameters for the entry lane when one entry lane conflicts with two circulating lanes.

18. Bypass Type1a: refers to a yielding Bypass lane opposed by one exiting lane

19. Bypass Type 1b: refers to a yielding Bypass lane opposed by two exiting lanes

20. Bypass Type 2: refers to a non-yielding Bypass lanes that merge with exiting traffic through a downstream merging operation, no empirical model exist yet, but higher entry capacities are expected

Disclaimer

ALDOT assumes no liability for this product content or use thereof and shall not be liable of errors resulting from the use or misuse of this product. This software product does not constitute a standard, specification, or regulation. The user accepts full responsibility.

This planning tool is based on the Capacity Analysis for Planning of Junctions (CAP-X) sofware developed by the Federal Highway Administration (FHWA). The CAP-X software was modified for use by Alabama Department of Transportation. Modifications include:

i. A lane utilization function to account for lane disciplane.

ii. A function to account for pedestrian traffic .

iii. A "future year" function to allow for user defined n years design period in the traffic growth model equation.

iv. A function to allow for user defined parameters in the capacity model equations.

v. A function to allow for a Right-Turn Bypass analysis.

vi. A display function of the Right-Turn Bypass lane Measures of Effectiveness (MoE's) on each "Result Sheet".

vii. A display function of each "Approach Delay" and the "Overall Intersection Delay" on each "Result Sheet".

viii. A redefined color-coded output of V/C ratios, LOS and Delays .

This tool maybe updated to reflect changing practices and experience in the State. It is the responsibility of the user to check the ALDOT website periodically for updates to this tool.

Abbreviation Definition

EB	Eastbound
pc/h	Passenger Car Per Hour
PCE	Per Car Equivalent
LT,TR	Left+ Through, Through Right
L, LTR	Left , Left +Through +Right
LTR,R	Left+Through+Right, Right
NB	Northbound
RT lane	Right Lane
LT lane	Left Lane
SB	Southbound
V/C	Volume/Capacity
Veh/h	Vehicle per hour
WB	Westbound
f _{HV}	Heavy Vehicle adjustment factor
f _{ped}	Pedestrian adjustment factor
ped/h	Pedestrian per hour

Input Worksheet

Project Name:	Vestavia Hills Traffic Operations Study Phase 1
Project Number:	SA#18-0337
Location	Vestavia Hills, Alabama
Date	March 28, 2019

			Traffic Volu	ime Demand				
			Traffic		Lana			
	U-Turn	Left	Thru	Right	Proportion of Trucks	Volume Growth Rate	n _{ped} (ped/h)	Lane Discipline: 2-Lane Approach
Eastbound	0	0	0	0	1.30%	1.00%	0	Not Sure
Westbound	0	230	0	272	1.30%	1.00%	0	Not Sure
Southbound	0	92	253	0	1.30%	1.00%	0	LT,TR
Northbound	0	0	597	80	1.30%	1.00%	0	LT,TR
Peak Hour Factor	1.00	0.88	0.90	0.83				
Truck to PCE Factor	2.00				-			
Design Period (years)	5							
Construction Year	2015							

	Den	Adjustment Factors					
		f _{H∨}	f _{ped}				
	U-Turn	Left	Thru	Right	'ΗV	Single-lane entry	Multilane entry
Eastbound	0	0	0	0	0.987	1.000	1.000
Westbound	0	276	0	345	0.987	1.000	1.000
Southbound	0	110	296	0	0.987	1.000	1.000
Northbound	0	0	699	102	0.987	1.000	1.000

Notes:

Year

1 The Traffic Volume Demand input values are movement volumes for the year of construction completion

2 The proportion of truck traffic and growth rate values are to be entered as percentile eg. If growth rate or proportion of truck traffic is 2%, enter 2 and not 0.02

3 Growth rate values ranges from 0% to 4%. If no data available, use 0.5%

4 Lane Discipline refers to existing intersection approach (2 lanes) configuration as indicated by the existing pavement markings. This may be different from the ultim roundabout entry lane configuration depending on the traffic volume redistribution (See "Design Sheet" on subsequent worksheets). If no information is available, a in the case of a new road development, select "Not Sure".

5 The design period is typically 20 years as per Section 2.2.5 of ALDOT Roundabout Manual. A user may however, select a design year per their design requirement

6 The Peak Hour Factor input cell default value is 0.95

7 Truck to PCE factor has default value of 2.0 per section 2.2.1 of the ALDOT Roundabout Manual.

Output Worksheet

Project Name:	Vestavia Hills Traffic Operations Study Phase 1	NABAMA
Project Number:	SA#18-0337	
Location	Vestavia Hills, Alabama	ALABAMA DEPARTMENT OF TRANSPORTATION
Date	March 28, 2019	

Results for Roundabouts														
# TYPE OF Z		Zone 1 (North) Zone 3 (West)			Vest)	Zone 2 (South)			Zone 4 (Eest)			Consolidated	Bonking	
ROUNDABOUT	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	LOS	Ranking
<u>1 X 1</u>	LOS A	\nearrow	n/a	LOS B		n/a	LOS B	\nearrow	n/a	LOS E	\nearrow	n/a	LOS C	#DIV /0!
<u>1 X 2</u>	LOS A		n/a	LOS A	LOS A	n/a	LOS B	\nearrow	n/a	LOS A	LOS B	n/a	#DIV/0!	#DIV/0!
<u>2 X 1</u>	LOS A	LOS A	n/a	LOS A	\nearrow	n/a	LOS A	LOS A	n/a	LOS C	\nearrow	n/a	#DIV/0!	#DIV/0!
<u>2 X 2</u>	LOS A	LOS A	n/a	LOS A	LOS A	n/a	LOS A	LOS A	n/a	LOS B	LOS B	n/a	#DIV/0!	#DIV/0!
	ROUNDABOUT <u>1 X 1</u> <u>1 X 2</u> <u>2 X 1</u>	ROUNDABOUTLane 11X1LOS A1X2LOS A2X1LOS A	ROUNDABOUTLane 1Lane 21 X 1LOS A1 X 2LOS A2 X 1LOS ALOS ALOS A	ROUNDABOUTLane 1Lane 2Bypass Lane1 X 1LOS An/a1 X 2LOS An/a2 X 1LOS ALOS A	IntroductionROUNDABOUTLane 1Lane 2Bypass LaneLane 11 X 1LOS AImage: mail of the state of the st	NITE OFROUNDABOUTLane 1Lane 2Bypass LaneLane 1Lane 21 X 1LOS A///////////////////////////////	TYPE OF ROUNDABOUTZone 1 (North)Zone 3 (West)Lane 1Lane 2Bypass LaneLane 1Lane 2Bypass Lane1 X 1LOS AImage: Colspan="4">Image: Colspan="4"1 X 2LOS ALOS AImage: Colspan="4">Image: Colspan="4"2 X 1LOS ALOS AImage: Colspan="4"Image: Colspan="4"2 X 1LOS ALOS AImage: Colspan="4"Image: Colspan="4"Image: Colspan="4"1 X 2LOS ALOS AImage: Colspan="4"LOS AImage: Colspan="4"Image: Colspan="4"1 X 2LOS ALOS AImage: Colspan="4"LOS AImage: Colspan="4"Image: Colspan="4"1 X 2LOS ALOS AImage: Colspan="4"LOS AImage: Colspan="4"Image: Colsp	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 3 (West) 1 X 1 Lane 1 Lane 2 Bypass Lane Lane 1 Los B In/a LOS B LOS A In/a LOS A<	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (S 1 Ane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 2 Image: Solution of the so	TYPE OF Zone 1 (North) Zone 3 (West) Zone 2 (South) ROUNDABOUT Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane 1 X 1 LOS A Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspa="4"Col	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (South) Zo	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (South) Zone 4 (Boundary conditional) 1x1 Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 2 Lane 1 Lane 2 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 2 Lane 2 Lane 2	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (South) Zone 4 (Eest) Lane 1 Lane 2 Bypass Lane In/a In/a In/a LOS B In/a LOS B In/a In/a <td>TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (South) Zone 4 (Eest) Consolidated LOS 1 Ane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Los A Lane 2 Bypass Lane Los A Los A In/a LOS C Los A In/a LOS C In/a LOS C In/a IDV/0! 1 X 2 LOS A LOS A n/a LOS A In/a LOS A In/a LOS A In/a IDV/0! 2 X 1 LOS A LOS A n/a LOS A In/a LOS A In/a LOS A In/a IDV/0!</td>	TYPE OF ROUNDABOUT Zone 1 (North) Zone 3 (West) Zone 2 (South) Zone 4 (Eest) Consolidated LOS 1 Ane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Lane 1 Lane 2 Bypass Lane Los A Lane 2 Bypass Lane Los A Los A In/a LOS C Los A In/a LOS C In/a LOS C In/a IDV/0! 1 X 2 LOS A LOS A n/a LOS A In/a LOS A In/a LOS A In/a IDV/0! 2 X 1 LOS A LOS A n/a LOS A In/a LOS A In/a LOS A In/a IDV/0!

ALABAMA DEPARTMENT OF TRANSPORTATION

Capacity Analysis for Planning of Roundabouts

©July 2015

Instructions for Use

This tool is designed to provide a quick guide in determining a suitable layout for a proposed roundabout at planning level. Four predetermined hierarchical layouts —namely, 1x1 Rndabt, 1NS x 2 EW Rndabt, 2 NS x 1 EW Rndabt and 2x2 Rndabt (See Notice for details) — are evaluated for their operational performances. The evaluation follows the procedures set in the Highway Capacity Manual (2010 HCM), *NCHRP* Report 672 and the ALDOT Roundabout Planning, Design and Operational Manual. Final selection of a suitable layout should be based on a balanced cost and operational efficiency. The configurations presented here may be used for planning purposes only. Further analysis may be needed to achieve optimum design configuration

Steps in using this tool:

Step 1: Go to the Input worksheet and fill in the required information located in the "Yellow" boxes.

Step 2: Go through the "Design Sheet" on the second page of each design worksheet and fill in the required information located in the "Yellow" boxes.

Step 3: Review the design on the "Result Sheet" located on the first page of each design worksheet and adjust the number of lanes (Right-turn Bypass lanes) for each approach where required.

Step 4: Go to the Output Worksheet and review the consolidated output of the different configurations.

Notes

1. Best practices suggest V/C ratio thresholds of between 0.85 and 0.90 for satisfactory performance of the roundabout during the design year. Higher degree of saturation (V/C > 0.85) may still perform acceptably in less critical areas (such as intersection with minor streets) where the impact of adding capacity exceeds benefit. More care may be appropriate in areas where queuing is more sensitive (e.g., closely spaced intersections, and interchange off-ramps).

2. Where a Type 2 Right-Turn Bypass lane (refer to ALDOT manual) is required, the analysis assumes zero delay and large capacity on the Bypass lane.

3. Projected Traffic Volume is the volume per day at the end of n years.

4. 1x1 Rndabt : refers to design geometry where one-lane entry conflicts with one-lane circulating lane.

5. 1NS x 2 EW Rndabt: refers to design geometry where one entry lane conflicts with two circulating lanes.

6. NS x 1 EW Rndabt: refers to design geometry where two entry lanes conflict with one circulating lanes.

7. 2x2 Rndabt : refers to design geometry where two entry lanes conflict with two circulating lanes.

8. Four SHADES OF GREEN are used to indicate different levels of acceptability of a particular performance measure; dark green indicates highly favorable and light green indicate less favorable.

9. Generally, a RED shaded cell indicate unacceptable performance measure.

10.Calibration Parameters for Capacity Equations: Refer to TABLE 2.3 in the ALDOT Roundabout Manual for values of Parameters A and B. Otherwise input site-specific values.

11. To reset the parameter values in the "Design Sheet" to their default values , simply delete the content of the cells

13. Single-lane: refers to model parameters for the single entry lane when one-lane entry conflicts with one-lane circulating lane

14 2x2, RT lane: refers to model parameters for the entry right lane when two entry lanes conflict with two circulating lanes

15. 2x2, LT lane: refers to model parameters for the entry left lane when two entry lanes conflict with two circulating lanes

16. 2x1, RT/LT lanes: refers to model parameters for each entry lane when two entry lanes conflict with one circulating lanes

17. 1x2, one lane: refers to model parameters for the entry lane when one entry lane conflicts with two circulating lanes.

18. Bypass Type1a: refers to a yielding Bypass lane opposed by one exiting lane

19. Bypass Type 1b: refers to a yielding Bypass lane opposed by two exiting lanes

20. Bypass Type 2: refers to a non-yielding Bypass lanes that merge with exiting traffic through a downstream merging operation, no empirical model exist yet, but higher entry capacities are expected

Disclaimer

ALDOT assumes no liability for this product content or use thereof and shall not be liable of errors resulting from the use or misuse of this product. This software product does not constitute a standard, specification, or regulation. The user accepts full responsibility.

This planning tool is based on the Capacity Analysis for Planning of Junctions (CAP-X) sofware developed by the Federal Highway Administration (FHWA). The CAP-X software was modified for use by Alabama Department of Transportation. Modifications include:

i. A lane utilization function to account for lane disciplane.

ii. A function to account for pedestrian traffic .

iii. A "future year" function to allow for user defined n years design period in the traffic growth model equation.

iv. A function to allow for user defined parameters in the capacity model equations.

v. A function to allow for a Right-Turn Bypass analysis.

vi. A display function of the Right-Turn Bypass lane Measures of Effectiveness (MoE's) on each "Result Sheet".

vii. A display function of each "Approach Delay" and the "Overall Intersection Delay" on each "Result Sheet".

viii. A redefined color-coded output of V/C ratios, LOS and Delays .

This tool maybe updated to reflect changing practices and experience in the State. It is the responsibility of the user to check the ALDOT website periodically for updates to this tool.

Abbreviation Definition

EB	Eastbound
pc/h	Passenger Car Per Hour
PCE	Per Car Equivalent
LT,TR	Left+ Through, Through Right
L, LTR	Left , Left +Through +Right
LTR,R	Left+Through+Right, Right
NB	Northbound
RT lane	Right Lane
LT lane	Left Lane
SB	Southbound
V/C	Volume/Capacity
Veh/h	Vehicle per hour
WB	Westbound
f _{HV}	Heavy Vehicle adjustment factor
f _{ped}	Pedestrian adjustment factor
ped/h	Pedestrian per hour

Input Worksheet

Project Name:	Vestavia Hills Traffic Operations Study Phase 1
Project Number:	SA#18-0337
Location	Vestavia Hills, Alabama
Date	March 28, 2019

			Traffic Volu	ime Demand				
	Volume (Veh/h)					Troffic		Lana
	U-Turn	Left	Thru	Right	Proportion of Trucks	Traffic Volume Growth Rate	n _{ped} (ped/h)	Lane Discipline: 2-Lane Approach
Eastbound	0	0	0	0	1.30%	1.00%	0	Not Sure
Westbound	0	90	0	79	1.30%	1.00%	0	Not Sure
Southbound	0	184	320	0	1.30%	1.00%	0	LT,TR
Northbound	0	0	464	256	1.30%	1.00%	0	LT,TR
Peak Hour Factor	0.94	0.94	0.94	0.94				
Truck to PCE Factor	2.00				-			
Design Period (years)	5							
Construction Year	2015							

	Den	Adjustment Factors					
		f _{H∨}	f _{ped}				
	U-Turn	Left	Thru	Right	'ΗV	Single-lane entry	Multilane entry
Eastbound	0	0	0	0	0.987	1.000	1.000
Westbound	0	101	0	89	0.987	1.000	1.000
Southbound	0	206	359	0	0.987	1.000	1.000
Northbound	0	0	520	287	0.987	1.000	1.000

Notes:

Year

1 The Traffic Volume Demand input values are movement volumes for the year of construction completion

2 The proportion of truck traffic and growth rate values are to be entered as percentile eg. If growth rate or proportion of truck traffic is 2%, enter 2 and not 0.02

3 Growth rate values ranges from 0% to 4%. If no data available, use 0.5%

4 Lane Discipline refers to existing intersection approach (2 lanes) configuration as indicated by the existing pavement markings. This may be different from the ultim roundabout entry lane configuration depending on the traffic volume redistribution (See "Design Sheet" on subsequent worksheets). If no information is available, a in the case of a new road development, select "Not Sure".

5 The design period is typically 20 years as per Section 2.2.5 of ALDOT Roundabout Manual. A user may however, select a design year per their design requirement

6 The Peak Hour Factor input cell default value is 0.95

7 Truck to PCE factor has default value of 2.0 per section 2.2.1 of the ALDOT Roundabout Manual.

Output Worksheet

Project Name:	Vestavia Hills Traffic Operations Study Phase 1	NABAMA
Project Number:	SA#18-0337	
Location	Vestavia Hills, Alabama	ALABAMA DEPARTMENT OF TRANSPORTATION
Date	March 28, 2019	

Results for Roundabouts															
# TYPE OF ROUNDABOU	TYPE OF	Zo	one 1 (N	lorth)	Z	one 3 (V	Vest)	Zo	one 2 (S	outh)	Z	one 4 (E	Eest)	Consolidated	Ranking
	ROUNDABOUT	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	Lane 1	Lane 2	Bypass Lane	LOS	Ranking
1.0	<u>1 X 1</u>	LOS A	\nearrow	n/a	LOS B		n/a	LOS B		n/a	LOS A		n/a	LOS B	#DIV/0!
1.2	<u>1 X 2</u>	LOS A		n/a	LOS A	LOS A	n/a	LOS B		n/a	LOS A	LOS A	n/a	#DIV/0!	#DIV/0!
1.3	<u>2 X 1</u>	LOS A	LOS A	n/a	LOS A		n/a	LOS A	LOS A	n/a	LOS A	\nearrow	n/a	#DIV/0!	#DIV/0!
1.4	<u>2 X 2</u>	LOS A	LOS A	n/a	LOS A	LOS A	n/a	LOS A	LOS A	n/a	LOS A	LOS A	n/a	#DIV/0!	#DIV/0!

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		۲	el 🕴		٦	el el	
Traffic Volume (vph)	18	7	5	104	4	158	6	707	102	68	292	13
Future Volume (vph)	18	7	5	104	4	158	6	707	102	68	292	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.978			0.920			0.981			0.994	
Flt Protected		0.971			0.981		0.950			0.950		
Satd. Flow (prot)	0	1769	0	0	1681	0	1770	1827	0	1770	1852	0
Flt Permitted		0.737	-	-	0.848	-	0.496		-	0.117		
Satd. Flow (perm)	0	1343	0	0	1453	0	924	1827	0	218	1852	0
Right Turn on Red	Ű	1010	Yes	Ű	1100	Yes	021	1021	Yes	210	1002	Yes
Satd. Flow (RTOR)		9			94	100		18	100		5	100
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.54	0.54	0.54	0.74	0.74	0.74	0.84	0.84	0.84	0.76	0.76	0.76
Adj. Flow (vph)	33	13	9	141	5	214	0.04	842	121	89	384	17
Shared Lane Traffic (%)	00	10	5	141	J	214	1	042	121	03	504	17
Lane Group Flow (vph)	0	55	0	0	360	0	7	963	0	89	401	0
Turn Type	Perm	NA	U	Perm	NA	0	Perm	NA	0	Perm	NA	U
Protected Phases	I CIIII	8		I CIIII	4		I CIIII	6		I enn	2	
Permitted Phases	8	0		4	4		6	0		2	2	
Detector Phase	8	8		4	4		6	6		2	2	
Switch Phase	0	0		4	4		0	0		2	2	
Minimum Initial (s)	7.0	7.0		7.0	7.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	24.0	24.0		24.0	24.0		52.0	52.0		52.0	52.0	
Total Split (%)	31.6%	31.6%		31.6%	31.6%		68.4%	68.4%		68.4%	68.4%	
Maximum Green (s)	20.0	20.0		20.0	20.0		46.9	46.9		46.9	46.9	
Yellow Time (s)	4.0	4.0		4.0	4.0		40.9	40.9		40.9	40.9	
All-Red Time (s)	4.0	4.0		0.0	4.0		4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		5.1	5.1		5.1	5.1	
Lead/Lag		4.0			4.0		5.1	0.1		0.1	5.1	
Lead-Lag Optimize?												
.	2.7	2.7		2.7	2.7		3.2	3.2		3.2	3.2	
Vehicle Extension (s)												
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		16.6			16.6		39.2	39.2		39.2	39.2	
Actuated g/C Ratio		0.25			0.25		0.60	0.60		0.60	0.60	
v/c Ratio		0.16			0.82		0.01	0.88		0.68	0.36	
Control Delay		19.9			35.7		5.7	22.2		41.5	7.9	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		19.9			35.7		5.7	22.2		41.5	7.9	
LOS		B			D		A	С		D	A	
Approach Delay		19.9			35.7			22.0			14.0	
Approach LOS		В			D			С			В	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 AM

	≯ →	\mathbf{r}	∢	←	•	1	1	1	1	Ļ	~
Lane Group	EBL EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)	20			166		3	584		46	133	
Fuel Used(gal)	0			4		0	8		1	2	
CO Emissions (g/hr)	19			276		2	583		68	131	
NOx Emissions (g/hr)	4			54		0	113		13	25	
VOC Emissions (g/hr)	4			64		1	135		16	30	
Dilemma Vehicles (#)	0			17		0	0		0	0	
Queue Length 50th (ft)	17			118		1	320		24	81	
Queue Length 95th (ft)	24			158		5	439		#82	102	
Internal Link Dist (ft)	201			322			152			191	
Turn Bay Length (ft)						75					
Base Capacity (vph)	441			534		675	1340		159	1355	
Starvation Cap Reductn	0			0		0	0		0	0	
Spillback Cap Reductn	0			0		0	0		0	0	
Storage Cap Reductn	0			0		0	0		0	0	
Reduced v/c Ratio	0.12			0.67		0.01	0.72		0.56	0.30	
Intersection Summary											
Area Type: Oth	er										
Cycle Length: 76											
Actuated Cycle Length: 65.5											
Natural Cycle: 70											
Control Type: Actuated-Uncoord	dinated										
Maximum v/c Ratio: 0.88											
Intersection Signal Delay: 22.5			In	tersection	LOS: C						
Intersection Capacity Utilization	80.9%		IC	CU Level c	of Service	D					
Analysis Period (min) 15											
# 95th percentile volume exce	eds capacity, qu	eue may l	be longer								
Queue shown is maximum a		,	5								

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

	★ Ø4
52 s	24 s
	↓ ₀₈
52 s	24 s

4	2	3	×	×	*
SEL	SER	NEL	NET	SWT	SWR
					56
					56
					1900
			1000	1000	0
					0
					U
	1 00		1 00	1 00	1.00
1.00		1.00	1.00		1.00
0 950	0.000	0 950		0.351	
	1500		1001	1780	0
	1099		1001	1709	U
	1500		1001	1700	0
1/0/		ō4 l	1001	1/89	
				20	Yes
07	640		~-		
		_			
					0.57
					1%
328	640	1114	311	174	98
328	640	1114	311	272	0
Prot	Perm	pm+pt	NA	NA	
4		1	6	2	
	4	6	6		
4	4	1	6	2	
12.0	12.0	10.0	20.0	20.0	
4.0	4.0		4.5		
1.0					
39.1	7.4	240.2	8.4	21.0	
0.0	0.0	0.0	0.0	0.0	
39.1	7.4	240.2	8.4	21.0	
D	А	F	А	С	
18.2			189.6	21.0	
	SEL 190 190 1900 50 1 25 1.00 0.950 1787 0.950 1787 20.1 0.58 1% 328 Prot 4 12.0 1.05 1.00 3.28 Prot 4 12.0 1.05 3.28 Prot 4 12.0 1.00 3.28 0.58 1% 3.28 0.00 3.0 1.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.01 0.00 4.00 3.01 0.00 0.00	SEL SER 190 371 1900 371 1900 371 1900 371 1900 1900 50 0 1 1 25 1.00 1.00 1.00 0.950 0 1787 1599 0.950 0 1787 1599 0.950 0 1787 1599 0.950 0 20.1 0 0.58 0.58 1% 1% 328 640 Prot Perm 4 4 4 4 4 4 4 4 12.0 12.0 16.0 16.0 34.9% 30.0 30.0 3.0 1.0 1.0 0.0 0.0 4.0 4.0 4.0	SEL SER NEL 190 371 635 1900 1900 1900 50 0 100 1 1 1 25 25 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.950 0.950 1787 1599 1787 0.950 0.447 1787 1787 1599 841 Yes 640 1114 25 737 20.1	SEL SER NEL NET 190 371 635 258 190 371 635 258 190 1900 1900 1900 50 0 100 1900 1 1 1 1 25 25 100 1.00 1.00 0.950 0.950 0.447 1881 0.950 0.447 1881 0.950 0.447 1787 1599 841 1881 0.950 0.447 9.2 35 737 474 20.1 9.2 0.58 0.58 0.57 0.83 1% 1% 1% 1% 328 640 1114 311 Prot Perm pm+pt NA 4 1 6 6 4 4 1 6 4 4 1 6 4 4	SEL SER NEL NET SWT 190 371 635 258 143 190 371 635 258 143 190 371 635 258 143 190 1900 1900 1900 1900 50 0 100 1900 1900 1 1 1 1 1 25 25 0.950 0.951 0.950 0.950 0.951 0.950 0.950 0.447 1789 1881 1789 0.950 0.447 1789 325 35 737 474 400 20.1 9.2 7.8 0.58 0.58 0.57 0.83 0.82 1% 1% 1% 1% 1% 1% 36 0.58 0.57 0.83 0.82 1% 311 174 328 640 1114 311 <td< td=""></td<>

2019 AM 02/06/2019 Baseline Sain Associates

	4	2	3	×	×	*~	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
Approach LOS	В			F	С		
Stops (vph)	163	37	305	105	124		
Fuel Used(gal)	3	3	36	2	2		
CO Emissions (g/hr)	233	212	2483	148	165		
NOx Emissions (g/hr)	45	41	483	29	32		
VOC Emissions (g/hr)	54	49	575	34	38		
Dilemma Vehicles (#)	0	0	0	10	11		
Queue Length 50th (ft)	172	0	~915	72	100		
Queue Length 95th (ft)	151	0	#466	116	158		
Internal Link Dist (ft)	657			394	320		
Turn Bay Length (ft)	50		100				
Base Capacity (vph)	586	954	754	1213	704		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.56	0.67	1.48	0.26	0.39		
Intersection Summary							
Area Type:	Other						
Cycle Length: 97.5							
Actuated Cycle Length: 91.8	}						
Natural Cycle: 120							
Control Type: Actuated-Unc	oordinated						
Maximum v/c Ratio: 1.48							
Intersection Signal Delay: 12				In	tersection	LOS: F	
Intersection Capacity Utilization	tion 72.8%			IC	U Level o	of Service C	
Analysis Period (min) 15							
 Volume exceeds capacit 			ally infinit	e.			
Queue shown is maximu							
# 95th percentile volume e			eue may l	be longer.			
Queue shown is maximu	m after two	cycles.					
Splits and Phases: 1: Doll	ly Ridge Rd	& Grach	am Dr				
		a Giesii					

7 Ø1	¥ _{Ø2}	Ø4
24 s	39.5 s	34 s
¥ø6		
39.5 s		

	٦	-	\mathbf{F}	4	+	*	•	t	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ሻ	el 🗧		٦	eî	
Traffic Volume (vph)	18	12	5	224	6	354	6	707	405	222	292	13
Future Volume (vph)	18	12	5	224	6	354	6	707	405	222	292	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.981			0.918			0.945			0.994	
Flt Protected		0.975			0.981		0.950			0.950		
Satd. Flow (prot)	0	1782	0	0	1678	0	1770	1760	0	1770	1852	0
Flt Permitted		0.671			0.846		0.485			0.087		
Satd. Flow (perm)	0	1226	0	0	1447	0	903	1760	0	162	1852	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9			99			69			5	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.54	0.54	0.54	0.74	0.74	0.74	0.84	0.84	0.84	0.76	0.76	0.76
Adj. Flow (vph)	33	22	9	303	8	478	7	842	482	292	384	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	64	0	0	789	0	7	1324	0	292	401	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Total Split (s)	25.0	25.0		25.0	25.0		51.0	51.0		51.0	51.0	
Total Split (%)	32.9%	32.9%		32.9%	32.9%		67.1%	67.1%		67.1%	67.1%	
Maximum Green (s)	20.0	20.0		20.0	20.0		46.0	46.0		46.0	46.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.2	3.2		3.2	3.2	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		20.0			20.0		46.0	46.0		46.0	46.0	
Actuated g/C Ratio		0.26			0.26		0.61	0.61		0.61	0.61	
v/c Ratio		0.19			1.74		0.01	1.21		2.98	0.36	
Control Delay		21.2			364.7		6.2	122.7		932.7	8.6	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		21.2			364.7		6.2	122.7		932.7	8.6	
LOS		С			F		A	F		F	A	
Approach Delay		21.2			364.7			122.1			398.0	
Approach LOS		C			F			F			F	
· · · · · ·		-						-			-	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 AM with Trip Gen

	≯	-	$\mathbf{\hat{v}}$	∢	←	•	•	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		25			384		3	842		190	141	
Fuel Used(gal)		0			48		0	34		44	2	
CO Emissions (g/hr)		23			3352		2	2408		3053	137	
NOx Emissions (g/hr)		4			652		0	469		594	27	
VOC Emissions (g/hr)		5			777		1	558		708	32	
Dilemma Vehicles (#)		0			22		0	0		0	0	
Queue Length 50th (ft)		20			~533		1	~770		~201	84	
Queue Length 95th (ft)		28			#564		5	#908		#280	106	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		329			453		546	1092		98	1122	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.19			1.74		0.01	1.21		2.98	0.36	
Intersection Summary												
21	ther											
Cycle Length: 76												
Actuated Cycle Length: 76												
Natural Cycle: 45												
Control Type: Actuated-Uncod	ordinated											
Maximum v/c Ratio: 2.98												
Intersection Signal Delay: 252					tersection							
Intersection Capacity Utilization	on 126.2%			IC	CU Level o	of Service	Н					
Analysis Period (min) 15												
 Volume exceeds capacity 			ally infinit	e.								
Queue shown is maximum												
# 95th percentile volume ex			eue may l	be longer								
Queue shown is maximum	after two	cycles.										

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

↓ ø ₂	₩ Ø4
51s	25 s
	<u>↓</u> ₂₈
51 s	25 s

Intersection

Int Delay, s/veh

327.4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			÷	
Traffic Vol, veh/h	0	0	0	230	0	272	0	597	80	92	253	0
Future Vol, veh/h	0	0	0	230	0	272	0	597	80	92	253	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	Yield	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	86	86	86	75	75	75	87	87	87
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	0	0	267	0	316	0	796	107	106	291	0

Major/Minor	Minor2			Minor1			Major1		1	Major2				
Conflicting Flow All	1353	1406	291	1353	1353	850	291	0	0	903	0	0		
Stage 1	503	503	-	850	850	-	-	-	-	-	-	-		
Stage 2	850	903	-	503	503	-	-	-	-	-	-	-		
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-		
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-		
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-		
Pot Cap-1 Maneuver	128	140	751	~ 128	151	362	1276	-	-	757	-	-		
Stage 1	553	543	-	357	378	-	-	-	-	-	-	-		
Stage 2	357	357	-	553	543	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	14	117	751	~ 112	126	362	1276	-	-	757	-	-		
Mov Cap-2 Maneuver	14	117	-	~ 112	126	-	-	-	-	-	-	-		
Stage 1	553	452	-	357	378	-	-	-	-	-	-	-		
Stage 2	45	357	-	461	452	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	0		\$	1054.2			0			2.8				
HCM LOS	А			F										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		1276	-	-	-	181	757	-	-					
HCM Lane V/C Ratio		-	-	-	-	3.225	0.14	-	-					
HCM Control Delay (s)	0	-	-	9	1054.2	10.5	0	-					
HCM Lane LOS		А	-	-	Á	F	В	А	-					
HCM 95th %tile Q(veh	ı)	0	-	-	-	54.4	0.5	-	-					
Notes														
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3)0s -	+: Com	outation	Not De	fined	*: All r	najor volu	me in plate	oon	

Lanes, Volumes, Timings 3: US-31 & I-65 NB Ramps & Columbiana Rd

	¥	*_	•	٦	1	1	1	ţ	۶J	ه	4	\rightarrow
Lane Group	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations	۲ ۲	1	1	ካካ	<u></u>	1	1	<u></u>	1	1	1	77
Traffic Volume (vph)	71	384	808	449	838	889	92	818	36	90	69	557
Future Volume (vph)	71	384	808	449	838	889	92	818	36	90	69	557
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175	0		400		0	360		230		0	230
Storage Lanes	1	2		2		1	1		1		2	1
Taper Length (ft)	25			25			25				25	
Lane Util. Factor	1.00	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	0.88
Frt		0.850	0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950	0.950	
Satd. Flow (prot)	1770	1583	1583	3433	3539	1583	1770	3539	1583	1770	1770	2787
Flt Permitted	0.950			0.126			0.250			0.950	0.950	
Satd. Flow (perm)	1770	1583	1583	455	3539	1583	466	3539	1583	1770	1770	2787
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			362			666			56			688
Link Speed (mph)	25				40			40			40	
Link Distance (ft)	478				683			562			543	
Travel Time (s)	13.0				11.6			9.6			9.3	
Peak Hour Factor	0.88	0.88	0.88	0.96	0.96	0.96	0.79	0.79	0.79	0.81	0.81	0.81
Adj. Flow (vph)	81	436	918	468	873	926	116	1035	46	111	85	688
Shared Lane Traffic (%)	•	100	0.0	100	010	020		1000				
Lane Group Flow (vph)	81	436	918	468	873	926	116	1035	46	111	85	688
Turn Type	Prot	Perm	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	Prot	Perm
Protected Phases	8	1 01111		5	2		p	6		4	4	
Permitted Phases	•	8	8	2	_	2	6		6	•		4
Detector Phase	8	8	8	5	2	2	1	6	6	4	4	4
Switch Phase	•	· ·	•		_	_			•	•		•
Minimum Initial (s)	7.0	7.0	7.0	7.0	20.0	20.0	7.0	20.0	20.0	7.0	7.0	7.0
Minimum Split (s)	12.0	12.0	12.0	11.5	25.0	25.0	12.0	25.0	25.0	12.0	12.0	12.0
Total Split (s)	45.0	45.0	45.0	45.0	100.0	100.0	45.0	100.0	100.0	25.0	25.0	25.0
Total Split (%)	20.9%	20.9%	20.9%	20.9%	46.5%	46.5%	20.9%	46.5%	46.5%	11.6%	11.6%	11.6%
Maximum Green (s)	40.0	40.0	40.0	41.0	95.0	95.0	40.5	95.0	95.0	20.5	20.5	20.5
Yellow Time (s)	4.0	4.0	4.0	3.5	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	0.5	1.0	1.0	0.5	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	4.0	5.0	5.0	4.5	5.0	5.0	4.5	4.5	4.5
Lead/Lag	0.0	0.0	0.0	Lead	Lag	Lag	Lead	Lag	Lag			
Lead-Lag Optimize?				Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	5.0	5.0	3.0	5.0	5.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	Min	Min	None	Min	Min	None	None	None
Act Effct Green (s)	40.9	40.9	40.9	94.7	78.6	78.6	81.2	70.1	70.1	16.2	16.2	16.2
Actuated g/C Ratio	0.25	0.25	0.25	0.57	0.47	0.47	0.49	0.42	0.42	0.10	0.10	0.10
v/c Ratio	0.19	1.12	1.38	0.77	0.52	0.84	0.43	0.69	0.42	0.65	0.49	0.77
Control Delay	56.9	135.9	208.6	32.0	31.2	17.5	20.3	41.2	4.6	92.9	84.9	11.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	135.9	208.6	32.0	31.2	17.5	20.3	41.2	4.6	92.9	84.9	11.2
LOS	50.9 E	155.9 F	200.0 F	52.0 C	C	В	20.3 C	41.2 D	4.0 A	92.9 F	04.9 F	B
Approach Delay	178.0	Ľ	I.	U	25.8	U	U	37.8	~	1	28.6	U
Approach LOS	178.0 F				25.0 C			57.0 D			20.0 C	
	Г				U			U			U	

US31 at Columbiana/I-65 NB Ramps 02/25/2019 2019 AM

Lanes, Volumes, Timings 3: US-31 & I-65 NB Ramps & Columbiana Rd

	∢	*_	•	٦	Ť	1	1	ţ	۶J		\.	\mathbf{F}
Lane Group	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Stops (vph)	56	293	356	230	555	296	44	637	3	84	63	38
Fuel Used(gal)	1	13	39	7	15	10	1	16	0	3	2	4
CO Emissions (g/hr)	93	931	2725	508	1024	713	81	1136	14	200	144	259
NOx Emissions (g/hr)	18	181	530	99	199	139	16	221	3	39	28	50
VOC Emissions (g/hr)	21	216	631	118	237	165	19	263	3	46	33	60
Dilemma Vehicles (#)	0	0	0	0	22	0	0	19	0	0	0	0
Queue Length 50th (ft)	77	~613	~1097	130	344	288	57	476	0	126	95	0
Queue Length 95th (ft)	136	#889	#1400	204	428	554	80	503	13	185	147	14
Internal Link Dist (ft)	398				603			482			463	
Turn Bay Length (ft)	175			400			360		230			230
Base Capacity (vph)	436	390	663	1014	2075	1203	591	2075	951	224	224	953
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.19	1.12	1.38	0.46	0.42	0.77	0.20	0.50	0.05	0.50	0.38	0.72
Intersection Summary												
Area Type:	Other											
Cycle Length: 215												
Actuated Cycle Length: 165.	.6											
Natural Cycle: 120												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 1.38												
Intersection Signal Delay: 66	6.5			In	tersectior	LOS: E						
Intersection Capacity Utilizat	tion 81.5%			IC	CU Level o	of Service	D					
Analysis Period (min) 15												
~ Volume exceeds capacit			cally infinit	e.								
Queue shown is maximu												
# 95th percentile volume e			leue may l	be longer								
Queue shown is maximu	m after two	cycles.										
					_							

Splits and Phases: 3: US-31 & I-65 NB Ramps & Columbiana Rd

Ø1	1 _{ø2}	₩ø4	¥_Ø8
45 s	100 s	25 s	45 s
1 ø5	₩ø6		
45 s	100 s		

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

<u></u>	۶		~	~	-	•	•	ŧ	*	5	T	~
	_						۱ NDI			001		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	242	4	4.4	1	•	070		††	7	1		7
Traffic Volume (vph)	313	48	14	155	61	270	30	2032	114	46	726	35
Future Volume (vph)	313	48	14	155	61	270	30	2032	114	46	726	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	35		0	300		175	0		375
Storage Lanes	0		0	1		0	1		1	1		1
Taper Length (ft)	25	4.00	4.00	25	1.00	4.00	25	0.05	4 00	25	0.05	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.995			0.878				0.850			0.850
Flt Protected		0.960	-	0.950			0.950			0.950		
Satd. Flow (prot)	0	1779	0	1770	1635	0	1770	3539	1583	1770	3539	1583
Flt Permitted		0.146		0.735			0.276			0.030		
Satd. Flow (perm)	0	271	0	1369	1635	0	514	3539	1583	56	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			104				36			43
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		482			504			393			502	
Travel Time (s)		11.0			11.5			6.0			7.6	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.96	0.96	0.96	0.82	0.82	0.82
Adj. Flow (vph)	382	59	17	189	74	329	31	2117	119	56	885	43
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	458	0	189	403	0	31	2117	119	56	885	43
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		7.0	20.0	20.0	7.0	20.0	20.0
Minimum Split (s)	29.5	29.5		29.5	29.5		12.0	25.0	25.0	12.0	25.0	25.0
Total Split (s)	60.0	60.0		50.0	50.0		20.0	130.0	130.0	20.0	130.0	130.0
Total Split (%)	28.6%	28.6%		23.8%	23.8%		9.5%	61.9%	61.9%	9.5%	61.9%	61.9%
Maximum Green (s)	55.5	55.5		45.5	45.5		15.5	125.0	125.0	15.5	125.0	125.0
Yellow Time (s)	3.5	3.5		3.5	3.5		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		0.5	1.0	1.0	0.5	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5		4.5	4.5		4.5	5.0	5.0	4.5	5.0	5.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	C-Min
Walk Time (s)	7.0	7.0		7.0	7.0		Nono			Nono		
Flash Dont Walk (s)	18.0	18.0		18.0	18.0							
Pedestrian Calls (#/hr)	0	0		0	0							
Act Effct Green (s)	0	55.5		55.5	55.5		139.2	131.0	131.0	143.7	135.1	135.1
Actuated g/C Ratio		0.26		0.26	0.26		0.66	0.62	0.62	0.68	0.64	0.64
v/c Ratio		6.36		0.20	0.20		0.00	0.02	0.02	0.00	0.04	0.04
		2451.6		72.1	65.3		10.7	48.6	11.7	42.4	18.8	3.5
Control Delay		2451.0		0.0	05.5		0.0	40.0	0.0	42.4	0.0	0.0
Queue Delay												
Total Delay		2451.6		72.1	65.3		10.7	48.6	11.7	42.4	18.8	3.5

US31 at Shades Crest Rd 02/25/2019 2019 AM

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

	٦	-	\mathbf{r}	∢	←	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		F		E	E		В	D	В	D	В	A
Approach Delay		2451.6			67.5			46.1			19.5	
Approach LOS		F			Е			D			В	
Stops (vph)		254		132	237		10	1757	32	21	336	3
Fuel Used(gal)		190		4	7		0	47	1	1	9	0
CO Emissions (g/hr)		13315		253	489		19	3295	67	56	652	12
NOx Emissions (g/hr)		2591		49	95		4	641	13	11	127	2
VOC Emissions (g/hr)		3086		59	113		4	764	16	13	151	3
Dilemma Vehicles (#)		0		0	0		0	47	0	0	17	0
Queue Length 50th (ft)		~1120		226	403		13	1391	44	25	306	0
Queue Length 95th (ft)		#1227		288	474		26	#1681	81	69	315	15
Internal Link Dist (ft)		402			424			313			422	
Turn Bay Length (ft)				35			300		175			375
Base Capacity (vph)		72		361	508		447	2207	1000	165	2276	1033
Starvation Cap Reductn		0		0	0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0		0	0	0	0	0	0
Reduced v/c Ratio		6.36		0.52	0.79		0.07	0.96	0.12	0.34	0.39	0.04
Intersection Summary												
	Other											
Cycle Length: 210												
Actuated Cycle Length: 210												
Offset: 51 (24%), Reference	d to phase	2:NBTL a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 150												
Control Type: Actuated-Coor	rdinated											
Maximum v/c Ratio: 6.36												
Intersection Signal Delay: 29					tersection		_					
Intersection Capacity Utilizat	ion 108.4%	6		IC	U Level o	of Service	G					
Analysis Period (min) 15												
 Volume exceeds capacit 			ally infinit	e.								
Queue shown is maximur												
# 95th percentile volume e			eue may l	be longer								
Queue shown is maximur	m after two	o cycles.										

Splits and Phases: 1: US-31 & Shades Crest Rd

Ø1	Ø2 (R)	<u>_</u>
20 s	130 s	60 s
▲ Ø5	Ø6 (R)	₩ Ø8
20 s	130 s	50 s

Lanes, Volumes, Timings 1: Rocky Ridge Rd & US-280

	ሻ	Ť	ţ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations	ኘካ	^		1	ኘካካ	1
Traffic Volume (vph)	274	3867	3020	191	448	159
Future Volume (vph)	274	3867	3020	191	448	159
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350	1000	1000	0	100	100
Storage Lanes	2			1	100	100
Taper Length (ft)	75			ł	75	1
Lane Util. Factor	0.97	0.91	0.91	1.00	0.94	1.00
Frt	0.97	0.91	0.91	0.850	0.94	0.850
Fit Protected	0.950			0.050	0.950	0.050
	3433	E00E	5095	1502	4990	1583
Satd. Flow (prot)		5085	5085	1583		1003
Fit Permitted	0.950	5005	5005	1500	0.950	1500
Satd. Flow (perm)	3433	5085	5085	1583	4990	1583
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				79		88
Link Speed (mph)		55	55		40	
Link Distance (ft)		616	491		414	
Travel Time (s)		7.6	6.1		7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	298	4203	3283	208	487	173
Shared Lane Traffic (%)						
Lane Group Flow (vph)	298	4203	3283	208	487	173
Turn Type	Prot	NA	NA	Perm	Prot	Perm
Protected Phases	5	2	6		4	
Permitted Phases			-	6		4
Detector Phase	5	2	6	6	4	4
Switch Phase	v	-	v	v		
Minimum Initial (s)	8.0	12.0	12.0	12.0	8.0	8.0
Minimum Split (s)	12.5	24.5	24.5	24.5	22.5	22.5
Total Split (s)	40.0	200.0	160.0	160.0	40.0	40.0
Total Split (%)	40.0	83.3%	66.7%	66.7%	40.0	40.0
Maximum Green (s)	35.5	03.3% 193.5	153.5	153.5	35.5	35.5
()	35.5 3.5					
Yellow Time (s)		5.5	5.5	5.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	6.5	6.5	6.5	4.5	4.5
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max	Max	Max	None	None
Walk Time (s)		7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0	0	0	0
Act Effct Green (s)	25.4	193.5	163.6	163.6	28.1	28.1
Actuated g/C Ratio	0.11	0.83	0.70	0.70	0.12	0.12
v/c Ratio	0.79	0.00	0.92	0.18	0.12	0.65
Control Delay	116.8	31.0	34.8	8.2	110.8	58.5
						0.2
Queue Delay	0.0	0.0	0.0	0.0	0.3	
Total Delay	116.8	31.0	34.8	8.2	111.1	58.7

US280 at Shades Crest 02/25/2019 2019 AM

	ት	Ť	Ŧ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
LOS	F	С	С	А	F	E
Approach Delay		36.7	33.3		97.4	
Approach LOS		D	С		F	
Stops (vph)	263	3074	2378	40	431	75
Fuel Used(gal)	12	97	75	2	16	3
CO Emissions (g/hr)	872	6753	5242	116	1091	215
NOx Emissions (g/hr)	170	1314	1020	23	212	42
VOC Emissions (g/hr)	202	1565	1215	27	253	50
Dilemma Vehicles (#)	0	81	19	0	0	0
Queue Length 50th (ft)	234	2025	1478	61	263	128
Queue Length 95th (ft)	295	#2509	1793	118	311	227
Internal Link Dist (ft)		536	411		334	
Turn Bay Length (ft)	350				100	100
Base Capacity (vph)	524	4231	3577	1136	761	316
Starvation Cap Reductn	0	0	0	0	39	9
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.99	0.92	0.18	0.67	0.56
Intersection Summary						
Area Type:	Other					
Cycle Length: 240						
Actuated Cycle Length: 23	2.6					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.99						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	ation 92.4%			IC	U Level c	of Service F
Analysis Period (min) 15						
# 95th percentile volume			eue may	be longer.		
Queue shown is maxim	um after two	o cycles.				

Splits and Phases: 1: Rocky Ridge Rd & US-280

¶ø₂	1 Ø4
200 s	40 s
▲ ø5 🖌 ø6	
40 s 160 s	

Lane Configurations FI CH NEL NET SWT SWR Lane Configurations T 4 T Traffic Volume (vph) 151 22 7 456 294 171 Future Volume (vph) 151 22 7 456 294 171 Ideal Flow (vphp) 1900 100 100			R	-1	×	*	~
Lane Configurations Image: Configurations <				/			-
Traffic Volume (vph) 151 22 7 456 294 171 Future Volume (vph) 151 22 7 456 294 171 Ideal Flow (vphp) 1900 1900 1900 1900 1900 1900 Storage Length (ft) 0 100 125 0 0 Storage Length (ft) 75 75 Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 1.00 Fit 0.850 0.999 5 0 3536 1863 1583 Std. Flow (prot) 1770 1583 0 3362 1863 1583 Std. Flow (prot) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 Link Speed (mph) 125 40 40 116 114 14 Travel Time (s) 13.2 6.4 7.1 1868 320 1868 Shared Lane Traffic (%) 142 0 504				NEL			
Future Volume (vph) 151 22 7 456 294 171 Ideal Flow (vphp) 1900 1900 1900 1900 1900 1900 Storage Lanes 1 1 1 1 1 1 Taper Length (ft) 75 75 0 0.850 0.850 Fit Protected 0.950 0.999 0.850 0.850 0.850 Fit Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Tum on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 11.1 1 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) 12.0				_			
Ideal Flow (vphp) 1900 100 155 155 150							
Storage Length (ft) 0 100 125 0 Storage Lanes 1 1 1 1 1 Taper Length (ft) 75 75 75 75 Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 1.00 Frt 0.850 0.999 545 1.60 0.850 0.850 Flt Protected 0.950 0.950 0.950 0.950 5345 1863 1583 Storage Laney (ptr) 1770 1583 0 3362 1863 1583 Storage Long (ptr) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes Stat. Flow (RTOR) 24 40 40 11h Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 1.86	(,,,,						
Storage Lanes 1 1 1 1 1 Taper Length (ft) 75 75 75 Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 1.00 Fit Protected 0.950 0.999 0.850 0.850 0.850 Stad. Flow (prot) 1770 1583 0 3362 1863 1583 Fit Protected 0.950 0.950 0.950 0.950 0.950 Stad. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes 186 Link Speed (mph) 25 40 40 11 14 14 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td></td> <td></td> <td></td> <td></td> <td>1900</td> <td>1900</td> <td></td>					1900	1900	
Taper Length (ft) 75 75 Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 1.00 Frt 0.850 0.999 Stat. Flow (port) 1770 1583 0 3336 1863 1583 Flt Protected 0.950 0.950 0.950 Stat. Flow (port) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes Yes Stat. Flow (RTOR) 24 186 1166 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92							
Lane Util. Factor 1.00 1.00 0.95 0.95 1.00 1.00 Frt 0.850 0.999 0.850 0.850 0.850 Fit Protected 0.950 0.999 0.950 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 1166 1166 1166 Link Distance (ft) 484 376 414 1170 1583 0 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 8 496 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-		1				1
Frit 0.850 0.899 Satd. Flow (prot) 1770 1583 0 3536 1863 1583 Flt Permitted 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 24 40 40 Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6							
Fit Protected 0.950 0.999 Satd. Flow (pot) 1770 1583 0 3536 1863 1583 Flt Permitted 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 1863 1583 Link Distance (ft) 484 376 414 1770 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Turn Type Prot Perm Perm NA NA Permited Protected Phases 4 6 2 2 With Phase		1.00		0.95	0.95	1.00	
Satd. Flow (prot) 1770 1583 0 3536 1863 1583 Flt Permitted 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 1160 116			0.850				0.850
Fit Permitted 0.950 0.950 Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes 24 1863 1883 Link Distance (ft) 484 376 414 186 Link Distance (ft) 484 376 414 1770 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) 186 Perm Perm NA NA Perm Ium Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Stotch Phase 230 12.0<							
Satd. Flow (perm) 1770 1583 0 3362 1863 1583 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 24 186 186 Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Tum Type Prot Perm Perm NA NA Perm Protected Phases 4 6 6 2 2 2 Switch Phase 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0			1583	0		1863	1583
Right Turn on Red Yes Yes Satd. Flow (RTOR) 24 186 Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 6 2 2 Switch Phase 4 4 6 6 2 2 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Maximum Green (s) 28.7 28.7 39.0 39.0 39.0 39.0 Vellow Time (s) 3.1 3.1							
Satd. Flow (RTOR) 24 186 Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Switch Phase 4 6 2 2 Winimum Initial (s) 7.0 7.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (%) 42.9% 42.9% 57.1% 57.1% 57.1% 57.1% Maximum Green (s)	Satd. Flow (perm)	1770		0	3362	1863	
Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm NA NA Perm Perm Protected Phases 4 6 2 2 Switch Phase 2 2 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (%) 42.9% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1%	Right Turn on Red		Yes				
Link Speed (mph) 25 40 40 Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Switch Phase 4 6 6 2 23.0 Total Split (s) 32.0 33.0 43.0 44.0 44.0 Total Split (%) 42.9% 57.1% 57.1% 57.1% 57.1% Maximum Green (s) 28.7 28.7 39.0 39.0 39.0 39.0 Yellow Time (s) 1.2 1.2 1.2 1.2 1.2 1.2			24				186
Link Distance (ft) 484 376 414 Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 6 2 2 Switch Phase 4 4 6 6 2 2 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (%) 42.9% 57.1% 57.1% 57.1% 57.1% Maximum Green (s) 3.1 3.1 3.8 3.8 3.8 3.8 All	, ,	25			40	40	
Travel Time (s) 13.2 6.4 7.1 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 2 Switch Phase 4 4 6 6 2 2 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (s) 33.0 33.0 44.0 44.0 44.0 44.0 Total Split (%) 42.9% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 57.1% 55.0 5.0 5.0 5.0 5.0							
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Detector Phase 4 4 6 6 2 2 Switch Phase 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Mainimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 2							
Adj. Flow (vph) 164 24 8 496 320 186 Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Detector Phase 4 4 6 2 2 Switch Phase 4 4 6 6 2 2 Switch Phase	()		0.92	0.92			0.92
Shared Lane Traffic (%) Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Detector Phase 4 4 6 6 2 2 Switch Phase 4 4 6 6 2 2 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (s) 33.0 33.0 44.0 44.0 44.0 44.0 Total Split (s) 33.0 33.0 39.0 39.0 39.0 39.0 Yellow Time (s) 3.1 3.1 3.8 3.8 3.8 3.8 3.8 All-Red Time (s) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2							
Lane Group Flow (vph) 164 24 0 504 320 186 Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 2 Detector Phase 4 4 6 2 2 Switch Phase 4 4 6 6 2 2 Switch Phase 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 23.0							
Turn Type Prot Perm Perm NA NA Perm Protected Phases 4 6 2 Permitted Phases 4 6 6 2 Detector Phase 4 4 6 6 2 Switch Phase		164	24	0	504	320	186
Protected Phases 4 6 2 Permitted Phases 4 6 6 2 Detector Phase 4 4 6 6 2 Switch Phase 12.0 12.0 12.0 12.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 23.0 Total Split (s) 33.0 34.0 44.0 44.0 44.0 44.0 Total Split (%) 42.9% 42.9% 57.1% 57.1% 57.1% 57.1% Maximum Green (s) 28.7 28.7 39.0 39.0 39.0 39.0 Yellow Time (s) 1.2	,			Perm			
Permitted Phases 4 6 2 Detector Phase 4 4 6 6 2 2 Switch Phase Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (s) 33.0 33.0 44.0 44.0 44.0 44.0 Total Split (%) 42.9% 42.9% 57.1% 57.1% 57.1% 57.1% Maximum Green (s) 28.7 28.7 39.0 39.0 39.0 39.0 Yellow Time (s) 1.2							
Detector Phase 4 4 6 6 2 2 Switch Phase Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 23.0 Total Split (s) 33.0 33.0 44.0 44.0 44.0 44.0 Total Split (%) 42.9% 57.1% 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 </td <td></td> <td></td> <td>4</td> <td>6</td> <td></td> <td>_</td> <td>2</td>			4	6		_	2
Switch Phase Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 Minimum Split (s) 22.5 22.5 23.0 23.0 23.0 Total Split (s) 33.0 33.0 44.0 44.0 44.0 Total Split (s) 42.9% 42.9% 57.1% 57.1% 57.1% Maximum Green (s) 28.7 28.7 39.0 39.0 39.0 39.0 Yellow Time (s) 3.1 3.1 3.8 3.8 3.8 3.8 All-Red Time (s) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 1.5 1.5 3.0 3.0 3.0 3.0 Lead-Lag Dtimize? Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 Recall Mode Max Max Max Max Max Max Max		4			6	2	
Minimum Initial (s)7.07.012.012.012.012.0Minimum Split (s)22.522.523.023.023.023.0Total Split (s)33.033.044.044.044.044.0Total Split (%)42.9%42.9%57.1%57.1%57.1%57.1%Maximum Green (s)28.728.739.039.039.039.0Yellow Time (s)3.13.13.83.83.83.8All-Red Time (s)1.21.21.21.21.21.2Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)4.34.35.05.05.0Lead-Lag Optimize?Vehicle Extension (s)1.51.53.03.03.0Recall ModeMaxMaxMaxMaxMaxMaxWalk Time (s)7.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.0Pedestrian Calls (#/hr)00000Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0			•	Ŭ	Ū	-	_
Minimum Split (s)22.522.523.023.023.023.0Total Split (s)33.033.044.044.044.044.0Total Split (%)42.9%57.1%57.1%57.1%57.1%Maximum Green (s)28.728.739.039.039.039.0Yellow Time (s)3.13.13.83.83.83.8All-Red Time (s)1.21.21.21.21.21.2Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)4.34.35.05.05.0Lead-Lag Optimize?Vehicle Extension (s)1.51.53.03.03.0Recall ModeMaxMaxMaxMaxMaxMaxWalk Time (s)7.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.0Pedestrian Calls (#/hr)00000Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0		70	70	12 0	12.0	12 0	12 0
Total Split (s)33.033.044.044.044.044.0Total Split (%)42.9%42.9%57.1%57.1%57.1%57.1%Maximum Green (s)28.728.739.039.039.039.0Yellow Time (s)3.13.13.83.83.83.8All-Red Time (s)1.21.21.21.21.21.2Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)4.34.35.05.05.0Lead-LagLead-Lag Optimize?Vehicle Extension (s)1.51.53.03.03.0Recall ModeMaxMaxMaxMaxMaxMaxWalk Time (s)7.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.08.0Pedestrian Calls (#/hr)000000Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0	.,						
Total Split (%)42.9%42.9%57.1%57.1%57.1%57.1%Maximum Green (s)28.728.739.039.039.039.0Yellow Time (s)3.13.13.83.83.83.8All-Red Time (s)1.21.21.21.21.21.2Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)4.34.35.05.05.0Lead-Lag Optimize?28.73.03.03.03.0Vehicle Extension (s)1.51.53.03.03.0Recall ModeMaxMaxMaxMaxMaxWalk Time (s)7.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.08.0Pedestrian Calls (#/hr)000000Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0							
Maximum Green (s) 28.7 28.7 39.0 30.0 <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	,						
Yellow Time (s) 3.1 3.1 3.8 3.8 3.8 3.8 All-Red Time (s) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 5.0 5.0 5.0 Lead-Lag Lead-Lag Optimize? Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 3.0 Recall Mode Max Max Max Max Max Max Max Max Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 Actuated g/C Ratio 0.37 0.37 0.51 0.51 0.51 0.51 v/c Ratio 0.25 0.04 0.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
All-Red Time (s) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 5.0 5.0 5.0 Lead-Lag Lead-Lag Optimize?	.,						
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 5.0 5.0 5.0 Lead/Lag	.,						
Total Lost Time (s) 4.3 4.3 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 3.0 Recall Mode Max	. ,			1.2			
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 Recall Mode Max Max Max Max Max Max Max Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 8.0 8.0 8.0 8.0 8.0 8.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.37 0.37 0.51 0.51 0.51 v/c Ratio 0.25 0.04 0.30 0.34 0.21 Control Delay 18.0 6.9 11.6 12.6 2.4 Queue Delay 0.0 0.0 0.0 0.0 0.0							
Lead-Lag Optimize? Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 Recall Mode Max Max Max Max Max Max Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 8.0 8.0 8.0 8.0 8.0 8.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Act Effct Green (s) 28.7 28.7 39.0 39.0 39.0 Actuated g/C Ratio 0.37 0.37 0.51 0.51 0.51 v/c Ratio 0.25 0.04 0.30 0.34 0.21 Control Delay 18.0 6.9 11.6 12.6 2.4 Queue Delay 0.0 0.0 0.0 0.0		4.3	4.3		5.0	5.0	5.0
Vehicle Extension (s) 1.5 1.5 3.0 3.0 3.0 3.0 Recall Mode Max Max<							
Recall ModeMaxMaxMaxMaxMaxMaxMaxWalk Time (s)7.07.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.08.0Pedestrian Calls (#/hr)00000Act Effct Green (s)28.728.739.039.0Actuated g/C Ratio0.370.370.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0							
Walk Time (s)7.07.07.07.07.0Flash Dont Walk (s)8.08.08.08.08.08.0Pedestrian Calls (#/hr)00000Act Effct Green (s)28.728.739.039.039.0Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0							
Flash Dont Walk (s)8.08.08.08.08.08.08.0Pedestrian Calls (#/hr)000000Act Effct Green (s)28.728.739.039.039.0Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0							
Pedestrian Calls (#/hr) 0							
Act Effct Green (s)28.728.739.039.039.0Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0	Flash Dont Walk (s)	8.0	8.0	8.0	8.0	8.0	8.0
Actuated g/C Ratio0.370.370.510.510.51v/c Ratio0.250.040.300.340.21Control Delay18.06.911.612.62.4Queue Delay0.00.00.00.00.0	Pedestrian Calls (#/hr)	0	0	0	0	0	0
v/c Ratio 0.25 0.04 0.30 0.34 0.21 Control Delay 18.0 6.9 11.6 12.6 2.4 Queue Delay 0.0 0.0 0.0 0.0 0.0	Act Effct Green (s)	28.7	28.7		39.0	39.0	39.0
v/c Ratio 0.25 0.04 0.30 0.34 0.21 Control Delay 18.0 6.9 11.6 12.6 2.4 Queue Delay 0.0 0.0 0.0 0.0 0.0	Actuated g/C Ratio	0.37	0.37		0.51	0.51	0.51
Control Delay 18.0 6.9 11.6 12.6 2.4 Queue Delay 0.0 0.0 0.0 0.0 0.0			0.04		0.30	0.34	0.21
Queue Delay 0.0 0.0 0.0 0.0 0.0							
•							
Lotal Delay 18.0 6.9 11.6 12.6 2.4	Total Delay	18.0	6.9		11.6	12.6	2.4

US280 at Shades Crest 02/25/2019 2019 AM

	_#	\mathbf{F}	•	×	×	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
LOS	В	А		В	В	А
Approach Delay	16.6			11.6	8.8	
Approach LOS	В			В	А	
Stops (vph)	100	6		253	165	16
Fuel Used(gal)	2	0		5	3	1
CO Emissions (g/hr)	109	10		333	224	50
NOx Emissions (g/hr)	21	2		65	44	10
VOC Emissions (g/hr)	25	2		77	52	12
Dilemma Vehicles (#)	0	0		30	19	0
Queue Length 50th (ft)	53	0		69	86	0
Queue Length 95th (ft)	96	14		100	139	29
Internal Link Dist (ft)	404			296	334	
Turn Bay Length (ft)		100				
Base Capacity (vph)	659	605		1702	943	893
Starvation Cap Reductn	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0
Reduced v/c Ratio	0.25	0.04		0.30	0.34	0.21
Intersection Summary						
Area Type:	Other					
Cycle Length: 77						
Actuated Cycle Length: 77						
Natural Cycle: 50						
Control Type: Semi Act-Un	ncoord					
Maximum v/c Ratio: 0.34						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	ation 33.7%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 2: Rocky Ridge Rd & Shades Crest Rd

¥ _{ø2}	<u></u>
44 s	33 s
™ ø6	
44 s	

Intersection

Int Delay, s/veh	178.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		- 11	1	ľ	^
Traffic Vol, veh/h	291	114	537	96	78	1097
Future Vol, veh/h	291	114	537	96	78	1097
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Yield	-	None
Storage Length	0	-	-	160	150	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	80	80	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	327	128	671	120	83	1167

Major/Minor	Minor1	Ν	/lajor1	Major2			
Conflicting Flow All	1421	336	0 (
Stage 1	671	-			· -		
Stage 2	750	-					
Critical Hdwy	6.84	6.94		4.14	. <u>-</u>		
Critical Hdwy Stg 1	5.84	-			. <u>-</u>		
Critical Hdwy Stg 2	5.84	-			· -		
Follow-up Hdwy	3.52	3.32					
Pot Cap-1 Maneuver	~ 127	660		915	-		
Stage 1	470	-			· -		
Stage 2	427	-		· -	· -		
Platoon blocked, %					-		
Mov Cap-1 Maneuver		660		915	-		
Mov Cap-2 Maneuver		-			· -		
Stage 1	470	-	-				
Stage 2	388	-					
Approach	WB		NB	SB			
HCM Control Delay, s	\$ 978.7		0	0.6	;		
HCM LOS	F						
Minor Lane/Major Mv	mt	NBT	NBRWBLn1	SBL	SBT		
Capacity (veh/h)		_	- 150				
HCM Lane V/C Ratio		-	- 3.034				
HCM Control Delay (s	5)	-	-\$ 978.7				
HCM Lane LOS		-	- F				
HCM 95th %tile Q(vel	h)	-	- 42.2	0.3	-		
Notes							
~: Volume exceeds ca	anacity	\$ Do	lay exceeds 3	300e	+: Comp	utation Not Defined	*: All major volume in platoon
. volume exceeds ca	apacity	ф. De	ay exceeds	005	+. Compt		. An major volume in platoon

Lanes, Volumes, Timings
1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	٨		~	~	+	•	•	+	*	5	1	
	-		•	•		-	1	I	/	-	•	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		.	10	4.40	.	100	<u></u>		1	1		7
Traffic Volume (vph)	65	88	13	113	166	108	28	460	115	199	894	295
Future Volume (vph)	65	88	13	113	166	108	28	460	115	199	894	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	115		0	140		350
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.989			0.962				0.850			0.850
Flt Protected		0.981			0.986		0.950			0.950		
Satd. Flow (prot)	0	1807	0	0	1767	0	1770	3539	1583	1770	3539	1583
Flt Permitted		0.676			0.833		0.950			0.300		
Satd. Flow (perm)	0	1245	0	0	1493	0	1770	3539	1583	559	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			17				142			304
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		493			298			271			469	
Travel Time (s)		11.2			6.8			4.1			7.1	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.92	0.81	0.81	0.81	0.97	0.97	0.97
Adj. Flow (vph)	74	100	15	123	180	117	35	568	142	205	922	304
Shared Lane Traffic (%)												•••
Lane Group Flow (vph)	0	189	0	0	420	0	35	568	142	205	922	304
Turn Type	Perm	NA	Ŭ	Perm	NA	Ŭ	Prot	NA	Perm	pm+pt	NA	Perm
Protected Phases	ı onn	4		i onn	8		5	2	i onn	1	6	
Permitted Phases	4	т		8	U		U	2	2	6	U	6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase	т	7		0	0		0	2	2	•	U	U
Minimum Initial (s)	7.0	7.0		7.0	7.0		5.0	18.0	18.0	5.0	18.0	18.0
Minimum Split (s)	23.0	23.0		22.5	22.5		12.0	23.5	23.5	12.0	23.5	23.5
Total Split (s)	46.0	46.0		46.0	46.0		23.0	52.0	52.0	12.0	52.0	52.0
	38.0%	38.0%		38.0%	38.0%		19.0%	43.0%	43.0%	14.9%	43.0%	43.0%
Total Split (%)								45.0%	45.0%	14.9%		
Maximum Green (s)	40.0	40.0		40.0	40.0		17.0 3.0				46.5	46.5
Yellow Time (s)	3.5	3.5		3.5	3.5			4.0	4.0	3.0	4.0	4.0
All-Red Time (s)	2.5	2.5		2.5	2.5		3.0	1.5	1.5	3.0	1.5	1.5
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	5.5	5.5	6.0	5.5	5.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?		• •					Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.5	3.5	2.0	3.5	3.5
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
Walk Time (s)	7.0	7.0										
Flash Dont Walk (s)	10.0	10.0										
Pedestrian Calls (#/hr)	0	0						_	_		_	
Act Effct Green (s)		29.9			29.9		6.7	28.6	28.6	43.8	38.4	38.4
Actuated g/C Ratio		0.34			0.34		0.08	0.33	0.33	0.50	0.44	0.44
v/c Ratio		0.44			0.81		0.26	0.49	0.23	0.49	0.59	0.35
Control Delay		27.3			39.7		50.4	25.7	5.1	16.9	23.3	3.8
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		27.3			39.7		50.4	25.7	5.1	16.9	23.3	3.8

Baseline

Lanes, Volumes, Timings
1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	≯	-	$\mathbf{\hat{v}}$	4	-	*	1	1	1	1	ŧ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
LOS		С			D		D	С	А	В	С	A		
Approach Delay		27.3			39.7			23.0			18.2			
Approach LOS		С			D			С			В			
Stops (vph)		115			310		26	338	13	99	646	24		
Fuel Used(gal)		2			6		1	7	0	3	15	1		
CO Emissions (g/hr)		153			400		46	519	34	176	1048	99		
NOx Emissions (g/hr)		30			78		9	101	7	34	204	19		
VOC Emissions (g/hr)		36			93		11	120	8	41	243	23		
Dilemma Vehicles (#)		0			0		0	21	0	0	43	0		
Queue Length 50th (ft)		80			206		20	136	0	62	230	0		
Queue Length 95th (ft)		165			#416		52	181	29	117	346	52		
Internal Link Dist (ft)		413			218			191			389			
Turn Bay Length (ft)							115			140		350		
Base Capacity (vph)		608			735		366	2219	1045	457	2003	1028		
Starvation Cap Reductn		0			0		0	0	0	0	0	0		
Spillback Cap Reductn		0			0		0	0	0	0	0	0		
Storage Cap Reductn		0			0		0	0	0	0	0	0		
Reduced v/c Ratio		0.31			0.57		0.10	0.26	0.14	0.45	0.46	0.30		
Intersection Summary														
	Other													
Cycle Length: 121														
Actuated Cycle Length: 87.5	5													
Natural Cycle: 65														
Control Type: Actuated-Unc	coordinated													
Maximum v/c Ratio: 0.81														
5 7						Intersection LOS: C								
	Intersection Capacity Utilization 69.0% ICU Level of Service C													
Analysis Period (min) 15														

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

Ø1	Ø2	<u>→</u> _{Ø4}
18 s	52 s	46 s
▲ ø5	↓ _{Ø6}	₩ Ø8
23 s	52 s	46 s

Lane Group Lane Configurations Traffic Volume (vph)	SEL	SER	NEL			
Lane Configurations Traffic Volume (vph)	<u>۲</u>			NET	SWT	SWR
Traffic Volume (vph)		1				JWK
· · · /	11	r 9	-	↑ 167	₽ 229	7
Futuro Valuma (unh)	12 12	9	0 0	167	229	7
Future Volume (vph)						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	50	0	100			0
Storage Lanes	1	1	1			0
Taper Length (ft)	25	4.00	25	4 00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.996	
Flt Protected	0.950					
Satd. Flow (prot)	1787	1599	1881	1881	1874	0
Flt Permitted	0.950					
Satd. Flow (perm)	1787	1599	1881	1881	1874	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		16			2	
Link Speed (mph)	25			35	35	
Link Distance (ft)	737			474	400	
Travel Time (s)	20.1			9.2	7.8	
Peak Hour Factor	0.58	0.58	0.77	0.77	0.95	0.95
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	21	16	0	217	241	7
	21	10	U	217	241	1
Shared Lane Traffic (%)	04	10	0	047	040	0
Lane Group Flow (vph)	21 Dret	16	0	217	248	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		1	6	2	
Permitted Phases		4	6	6		
Detector Phase	4	4	1	6	2	
Switch Phase						
Minimum Initial (s)	12.0	12.0	10.0	20.0	20.0	
Minimum Split (s)	16.0	16.0	14.0	24.5	24.5	
Total Split (s)	34.0	34.0	24.0	39.5	39.5	
Total Split (%)	34.9%	34.9%	24.6%	40.5%	40.5%	
Maximum Green (s)	30.0	30.0	20.0	35.0	35.0	
Yellow Time (s)	3.0	3.0	3.0	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.5	4.5	
Lead/Lag	4.0	4.0	Lead	4.5		
			Yes		Lag Yes	
Lead-Lag Optimize?	2.0	2.0		2.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Act Effct Green (s)	12.2	12.2		35.1	35.1	
Actuated g/C Ratio	0.29	0.29		0.82	0.82	
v/c Ratio	0.04	0.03		0.14	0.16	
Control Delay	12.3	7.0		3.8	3.8	
Queue Delay	0.0	0.0		0.0	0.0	
Total Delay	12.3	7.0		3.8	3.8	
LOS	В	А		А	А	
Approach Delay	10.0			3.8	3.8	

2019 AM 02/06/2019 Baseline Sain Associates

		2	3	×	*	*	
Lane Group	SEL	SER	NEL	NET	SWT	SWR	
Approach LOS	В			А	А		
Stops (vph)	11	5		49	69		
Fuel Used(gal)	0	0		1	1		
CO Emissions (g/hr)	10	6		75	97		
NOx Emissions (g/hr)	2	1		15	19		
VOC Emissions (g/hr)	2	1		17	22		
Dilemma Vehicles (#)	0	0		9	13		
Queue Length 50th (ft)	3	0		0	0		
Queue Length 95th (ft)	9	5		42	58		
Internal Link Dist (ft)	657			394	320		
Turn Bay Length (ft)	50						
Base Capacity (vph)	1277	1147		1881	1690		
Starvation Cap Reductn	0	0		0	0		
Spillback Cap Reductn	0	0		0	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.02	0.01		0.12	0.15		
Intersection Summary							
Area Type:	Other						
Cycle Length: 97.5							
Actuated Cycle Length: 42	6						
Natural Cycle: 55							
Control Type: Semi Act-Un	ncoord						
Maximum v/c Ratio: 0.16							
Intersection Signal Delay:	4.3			In	tersectior	LOS: A	
Intersection Capacity Utiliz	ation 33.8%			IC	U Level o	of Service A	
Analysis Period (min) 15							

Splits and Phases: 1: Dolly Ridge Rd & Gresham Dr

D Ø1	¥ _{Ø2}	₩ Ø4
24 s	39.5 s	34 s
¥ø6		
39.5 s		

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	٦	-	\mathbf{F}	4	+	*	1	Ť	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	eî 🗧		5	ę.	
Traffic Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Future Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25		•	25		•	25		•	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975			0.940			0.977			0.993	
Flt Protected		0.972			0.975		0.950	0.011		0.950	0.000	
Satd. Flow (prot)	0	1765	0	0	1707	0	1770	1820	0	1770	1850	0
Flt Permitted	Ū	0.788	Ű	Ŭ	0.808	Ŭ	0.197	1020	Ŭ	0.381	1000	Ű
Satd. Flow (perm)	0	1431	0	0	1415	0	367	1820	0	710	1850	0
Right Turn on Red	0	1401	Yes	0	1410	Yes	507	1020	Yes	710	1000	Yes
Satd. Flow (RTOR)		11	103		52	103		21	103		6	103
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.85	0.85	0.85	0.83	0.83	0.83	0.80	0.80	0.80	0.89	0.2	0.89
	0.85	14	0.05	123	10	108	0.80	469	0.80 84	122	776	
Adj. Flow (vph)	30	14	11	123	10	108	20	409	84	IZZ	011	39
Shared Lane Traffic (%)	0	<u> </u>	0	0	044	0	00	550	0	400	045	0
Lane Group Flow (vph)	0	60	0	0	241	0	20	553	0	122	815	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	_
Protected Phases	0	8		4	4		0	6		0	2	
Permitted Phases	8	•		4	4		6	0		2	•	_
Detector Phase	8	8		4	4		6	6		2	2	
Switch Phase	7.0	7.0		7.0	7.0		45.0	45.0		45.0	45.0	_
Minimum Initial (s)	7.0	7.0		7.0	7.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	_
Total Split (s)	25.0	25.0		25.0	25.0		51.0	51.0		51.0	51.0	
Total Split (%)	32.9%	32.9%		32.9%	32.9%		67.1%	67.1%		67.1%	67.1%	_
Maximum Green (s)	20.0	20.0		20.0	20.0		46.0	46.0		46.0	46.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	_
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.2	3.2		3.2	3.2	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		13.0			13.0		31.2	31.2		31.2	31.2	
Actuated g/C Ratio		0.24			0.24		0.57	0.57		0.57	0.57	
v/c Ratio		0.17			0.64		0.10	0.53		0.30	0.78	
Control Delay		18.3			25.6		7.3	9.4		9.1	15.5	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		18.3			25.6		7.3	9.4		9.1	15.5	
LOS		В			С		А	А		А	В	
Approach Delay		18.3			25.6			9.3			14.7	
Approach LOS		В			С			А			В	
					-							

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 PM

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	٦	-	\mathbf{r}	∢	←	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		33			131		8	224		49	492	
Fuel Used(gal)		0			3		0	3		1	7	
CO Emissions (g/hr)		31			182		7	202		49	457	
NOx Emissions (g/hr)		6			35		1	39		10	89	
VOC Emissions (g/hr)		7			42		2	47		11	106	
Dilemma Vehicles (#)		0			13		0	0		0	0	
Queue Length 50th (ft)		12			53		3	88		17	169	
Queue Length 95th (ft)		43			133		11	164		53	371	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		571			590		303	1507		586	1529	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.11			0.41		0.07	0.37		0.21	0.53	
Intersection Summary												
Area Type:	Other											
Cycle Length: 76												
Actuated Cycle Length: 55.2	2											
Natural Cycle: 45												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 1				In	tersection	LOS: B						
Intersection Capacity Utilization 76.8% ICU Level of Service D												
Analysis Period (min) 15												

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

↓ ø2	₩ Ø4
51s	25 s
√ ¶ø6	₂₈
51 s	25 s

Intersection

Int Delay, s/veh

34.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	l
Lane Configurations		4			4			4			4	•=••	
Traffic Vol, veh/h	0	0	0	90	0	79	0	464	256	184	320	0	
Future Vol, veh/h	0	0	0	90	0	79	0	464	256	184	320	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	Yield	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	88	88	88	92	92	92	86	86	86	
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1	
Mvmt Flow	0	0	0	102	0	90	0	504	278	214	372	0	

Major/Minor	Minor2		ļ	Minor1		I	Major1		Ν	/lajor2			
Conflicting Flow All	1443	1582	372	1443	1443	643	372	0	0	782	0	0	
Stage 1	800	800	-	643	643	-	-	-	-	-	-	-	
Stage 2	643	782	-	800	800	-	-	-	-	-	-	-	
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-	
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-	
Pot Cap-1 Maneuver	111	109	676	111	133	475	1192	-	-	840	-	-	
Stage 1	380	399	-	464	470	-	-	-	-	-	-	-	
Stage 2	464	406	-	380	399	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	68	74	676	~ 83	90	475	1192	-	-	840	-	-	
Mov Cap-2 Maneuver	68	74	-	~ 83	90	-	-	-	-	-	-	-	
Stage 1	380	271	-	464	470	-	-	-	-	-	-	-	
Stage 2	376	406	-	258	271	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			265.6			0			3.9			
HCM LOS	А			F									
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1192	-	-	-	140	840	-	-				
HCM Lane V/C Ratio		-	-	-	-	1.372	0.255	-	-				
HCM Control Delay (s	;)	0	-	-	0	265.6	10.7	0	-				
HCM Lane LOS		А	-	-	А	F	В	А	-				
HCM 95th %tile Q(veh	ר)	0	-	-	-	12.3	1	-	-				
Notes													
~: Volume exceeds ca	apacity	\$: De	elay exc	eeds 3)0s ·	+: Com	outation	Not De	fined	*: All n	najor volu	me in platoon	

Lanes, Volumes, Timings 3: US-31 & I-65 NB Ramps & Columbiana Rd

	¥	*_	•	٦	1	1	1	ţ	۶J	ه	4	\mathbf{F}
Lane Group	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations	<u>۲</u>	1	1	ካካ	<u></u>	1	٦	<u></u>	1	7	7	77
Traffic Volume (vph)	128	307	888	221	746	795	89	1846	37	115	79	795
Future Volume (vph)	128	307	888	221	746	795	89	1846	37	115	79	795
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175	0		400		0	360		230		0	230
Storage Lanes	1	2		2		1	1		1		2	1
Taper Length (ft)	25			25			25				25	
Lane Util. Factor	1.00	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	0.88
Frt		0.850	0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950	0.950	
Satd. Flow (prot)	1770	1583	1583	3433	3539	1583	1770	3539	1583	1770	1770	2787
Flt Permitted	0.950			0.040			0.297			0.950	0.950	
Satd. Flow (perm)	1770	1583	1583	145	3539	1583	553	3539	1583	1770	1770	2787
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			373			669			56			603
Link Speed (mph)	25				40			40			40	
Link Distance (ft)	478				683			562			543	
Travel Time (s)	13.0				11.6			9.6			9.3	
Peak Hour Factor	0.87	0.87	0.87	0.95	0.95	0.95	0.98	0.98	0.98	0.94	0.94	0.94
Adj. Flow (vph)	147	353	1021	233	785	837	91	1884	38	122	84	846
Shared Lane Traffic (%)						•••	•.				• .	•••
Lane Group Flow (vph)	147	353	1021	233	785	837	91	1884	38	122	84	846
Turn Type	Prot	Perm	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	Prot	Perm
Protected Phases	8			5 p	2		μ μι 1	6		4	4	
Permitted Phases		8	8	2		2	6	-	6			4
Detector Phase	8	8	8	5	2	2	1	6	6	4	4	4
Switch Phase		· ·	· ·	· ·	_	_		•		•		·
Minimum Initial (s)	7.0	7.0	7.0	7.0	20.0	20.0	7.0	20.0	20.0	7.0	7.0	7.0
Minimum Split (s)	12.0	12.0	12.0	11.5	25.0	25.0	12.0	25.0	25.0	12.0	12.0	12.0
Total Split (s)	45.0	45.0	45.0	45.0	100.0	100.0	45.0	100.0	100.0	25.0	25.0	25.0
Total Split (%)	20.9%	20.9%	20.9%	20.9%	46.5%	46.5%	20.9%	46.5%	46.5%	11.6%	11.6%	11.6%
Maximum Green (s)	40.0	40.0	40.0	41.0	95.0	95.0	40.5	95.0	95.0	20.5	20.5	20.5
Yellow Time (s)	4.0	4.0	4.0	3.5	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	0.5	1.0	1.0	0.5	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	4.0	5.0	5.0	4.5	5.0	5.0	4.5	4.5	4.5
Lead/Lag				Lead	Lag	Lag	Lead	Lag	Lag			
Lead-Lag Optimize?				Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	4.0	4.0	4.0	4.0	5.0	5.0	3.0	5.0	5.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	Min	Min	None	Min	Min	None	None	None
Act Effct Green (s)	40.0	40.0	40.0	116.1	101.1	101.1	105.0	95.0	95.0	20.5	20.5	20.5
Actuated g/C Ratio	0.21	0.21	0.21	0.61	0.53	0.53	0.55	0.50	0.50	0.11	0.11	0.11
v/c Ratio	0.40	1.06	1.63	0.64	0.42	0.72	0.25	1.07	0.05	0.64	0.44	1.01
Control Delay	68.8	134.6	315.5	49.7	27.7	9.8	17.4	86.2	2.2	97.8	87.9	55.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.8	134.6	315.5	49.7	27.7	9.8	17.4	86.2	2.2	97.8	87.9	55.9
LOS	E	F	515.5 F	43.7 D	C	3.0 A	B	60.2 F	2.2 A	57.0 F	67.5 F	55.5 E
Approach Delay	249.7	I	1	U	22.4	Л	U	81.5	Λ	1	63.3	L
Approach LOS	249.1 F				22.4 C			61.5 F			03.5 E	
	Г				U			Г			E	

US31 at Columbiana/I-65 NB Ramps 02/25/2019 2019 PM

Lanes, Volumes, Timings 3: US-31 & I-65 NB Ramps & Columbiana Rd

	4	*	*	٦	Ť	1	1	Ŧ	¥		\searrow	\mathbf{F}
Lane Group	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Stops (vph)	110	265	338	137	436	156	39	1641	2	109	73	217
Fuel Used(gal)	3	11	62	5	12	7	1	56	0	4	2	14
CO Emissions (g/hr)	191	746	4330	322	836	476	73	3883	12	265	169	986
NOx Emissions (g/hr)	37	145	842	63	163	93	14	756	2	51	33	192
VOC Emissions (g/hr)	44	173	1004	75	194	110	17	900	3	61	39	228
Dilemma Vehicles (#)	0	0	0	0	15	0	0	45	0	0	0	0
Queue Length 50th (ft)	161	~483	~1451	94	305	147	46	~1361	0	149	100	~213
Queue Length 95th (ft)	235	#683	#1654	145	368	324	74	#1530	12	232	168	#382
Internal Link Dist (ft)	398				603			482			463	
Turn Bay Length (ft)	175			400			360		230			230
Base Capacity (vph)	372	333	627	797	1881	1155	595	1768	819	190	190	838
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.40	1.06	1.63	0.29	0.42	0.72	0.15	1.07	0.05	0.64	0.44	1.01
Intersection Summary												
Area Type: O	ther											
Cycle Length: 215												
Actuated Cycle Length: 190.1												
Natural Cycle: 150												
Control Type: Actuated-Uncod	ordinated											
Maximum v/c Ratio: 1.63												
Intersection Signal Delay: 101				In	tersection	LOS: F						
Intersection Capacity Utilization	on 88.0%			IC	U Level c	of Service	E					
Analysis Period (min) 15												
 Volume exceeds capacity 			cally infinit	e.								
Queue shown is maximum												
# 95th percentile volume ex			ieue may l	be longer								
Queue shown is maximum	after two	cycles.										

Splits and Phases: 3: US-31 & I-65 NB Ramps & Columbiana Rd

Ø1	1 ø2	Ø4	V Ø8
45 s	100 s	25 s	45 s
1 ø5	↓ Ø6		
45 s	100 s		

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

	٦	-+	>		+	×	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	• NBR	SBL	SBT	SBR
Lane Configurations		4		<u></u>	1		<u>المال</u>		11011	<u> </u>	1	700
Traffic Volume (vph)	67	84	40	158	₽ 74	72	35	TT 991	186	253	2073	330
Future Volume (vph)	67	84	40	158	74	72	35	991	186	253	2073	330
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Ideal Flow (vphpl)		1900		35	1900		300	1900			1900	1900 375
Storage Length (ft)	0		0			0			175	0		
Storage Lanes	0		0	1		0	1		1	1		1
Taper Length (ft)	25	4.00	4.00	25	4.00	4.00	25	0.05	4 00	25	0.05	4 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.972			0.926				0.850			0.850
Flt Protected		0.983	-	0.950			0.950			0.950		
Satd. Flow (prot)	0	1780	0	1770	1725	0	1770	3539	1583	1770	3539	1583
FIt Permitted		0.581		0.439			0.031			0.187		
Satd. Flow (perm)	0	1052	0	818	1725	0	58	3539	1583	348	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			22				147			194
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		482			504			393			502	
Travel Time (s)		11.0			11.5			6.0			7.6	
Peak Hour Factor	0.71	0.71	0.71	0.88	0.88	0.88	0.87	0.87	0.87	0.92	0.92	0.92
Adj. Flow (vph)	94	118	56	180	84	82	40	1139	214	275	2253	359
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	268	0	180	166	0	40	1139	214	275	2253	359
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase				-	-		-	_		-	-	-
Minimum Initial (s)	7.0	7.0		7.0	7.0		7.0	20.0	20.0	7.0	20.0	20.0
Minimum Split (s)	29.5	29.5		29.5	29.5		12.0	25.0	25.0	12.0	25.0	25.0
Total Split (s)	45.0	45.0		45.0	45.0		40.0	135.0	135.0	20.0	115.0	115.0
Total Split (%)	22.5%	22.5%		22.5%	22.5%		20.0%	67.5%	67.5%	10.0%	57.5%	57.5%
Maximum Green (s)	40.5	40.5		40.5	40.5		35.5	130.0	130.0	15.5	110.0	110.0
Yellow Time (s)	3.5	3.5		3.5	3.5		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		0.5	1.0	1.0	0.5	1.0	4.0
.,	1.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Lost Time Adjust (s)		4.5		4.5	4.5							
Total Lost Time (s)		4.3		4.5	4.3		4.5	5.0	5.0	4.5	5.0	5.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	4.0	4.0		4.0	1.0		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	C-Min
Walk Time (s)	7.0	7.0		7.0	7.0							
Flash Dont Walk (s)	18.0	18.0		18.0	18.0							
Pedestrian Calls (#/hr)	0	0		0	0							
Act Effct Green (s)		40.5		40.5	40.5		139.4	130.9	130.9	150.5	139.9	139.9
Actuated g/C Ratio		0.20		0.20	0.20		0.70	0.65	0.65	0.75	0.70	0.70
v/c Ratio		1.24		1.09	0.45		0.37	0.49	0.20	0.75	0.91	0.31
Control Delay		198.2		165.5	64.9		27.3	18.6	4.7	21.8	32.4	5.9
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		198.2		165.5	64.9		27.3	18.6	4.7	21.8	32.4	5.9

US31 at Shades Crest Rd 02/25/2019 2019 PM

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

	٦	→	\mathbf{r}	∢	-	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		F		F	E		С	В	А	С	С	A
Approach Delay		198.2			117.3			16.7			28.1	
Approach LOS		F			F			В			С	
Stops (vph)		148		130	110		11	489	23	75	1643	56
Fuel Used(gal)		9		7	3		0	12	1	3	41	2
CO Emissions (g/hr)		643		466	218		29	864	66	201	2857	151
NOx Emissions (g/hr)		125		91	42		6	168	13	39	556	29
VOC Emissions (g/hr)		149		108	50		7	200	15	47	662	35
Dilemma Vehicles (#)		0		0	0		0	25	0	0	51	0
Queue Length 50th (ft)		~428		~265	169		12	393	31	98	1271	73
Queue Length 95th (ft)		#436		#431	248		43	423	62	137	1448	128
Internal Link Dist (ft)		402			424			313			422	
Turn Bay Length (ft)				35			300		175			375
Base Capacity (vph)		217		165	366		347	2317	1087	372	2475	1165
Starvation Cap Reductn		0		0	0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0		0	0	0	0	0	0
Reduced v/c Ratio		1.24		1.09	0.45		0.12	0.49	0.20	0.74	0.91	0.31
Intersection Summary												
	Other											
Cycle Length: 200												
Actuated Cycle Length: 200												
Offset: 188 (94%), Reference	ed to phase	e 2:NBTL	and 6:SE	STL, Start	of Green							
Natural Cycle: 150												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 1.24												
Intersection Signal Delay: 40					tersectior		_					
Intersection Capacity Utilizati	on 97.9%			IC	U Level o	of Service	F					
Analysis Period (min) 15												
 Volume exceeds capacity 			ally infinit	e.								
Queue shown is maximun												
# 95th percentile volume ex			eue may	be longer								
Queue shown is maximun	n after two	cycles.										

Splits and Phases: 1: US-31 & Shades Crest Rd

Ø1	√vø2 (R) ■	<u> ≁</u> ø4
20 s	135 s	45 s
▲ ø5	● ◆ Ø6 (R)	↓ Ø8
40 s	115 s	45 s

Lanes, Volumes, Timings 1: Rocky Ridge Rd & US-280

	ሻ	Ť	ţ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations	ት ት	^	^	1	ሻሻሻ	1
Traffic Volume (vph)	309	2834	4637	668	324	265
Future Volume (vph)	309	2834	4637	668	324	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350	1300	1300	0	100	100
Storage Lanes	2			1	100	100
	75			1	75	1
Taper Length (ft) Lane Util. Factor	0.97	0.91	0.91	1.00	0.94	1.00
Frt	0.97	0.91	0.91	0.850	0.94	0.850
Fit Protected	0.950			0.000	0.950	0.000
		FUOL	E005	1500		1500
Satd. Flow (prot)	3433	5085	5085	1583	4990	1583
Fit Permitted	0.950	5005	5005	1500	0.950	1500
Satd. Flow (perm)	3433	5085	5085	1583	4990	1583
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				180		202
Link Speed (mph)		55	55		40	
Link Distance (ft)		616	491		414	
Travel Time (s)		7.6	6.1		7.1	
Peak Hour Factor	0.98	0.98	0.93	0.93	0.80	0.80
Adj. Flow (vph)	315	2892	4986	718	405	331
Shared Lane Traffic (%)						
Lane Group Flow (vph)	315	2892	4986	718	405	331
Turn Type	Prot	NA	NA	Perm	Prot	Perm
Protected Phases	5	2	6		4	
Permitted Phases				6		4
Detector Phase	5	2	6	6	4	4
Switch Phase		_				
Minimum Initial (s)	8.0	12.0	12.0	12.0	8.0	8.0
Minimum Split (s)	12.5	24.5	24.5	24.5	22.5	22.5
Total Split (s)	40.0	200.0	160.0	160.0	40.0	40.0
Total Split (%)	16.7%	83.3%	66.7%	66.7%	16.7%	16.7%
Maximum Green (s)	35.5	193.5	153.5	153.5	35.5	35.5
Yellow Time (s)	3.5	5.5	5.5	5.5	35.5	35.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	6.5	6.5	6.5	4.5	4.5
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max	Max	Max	None	None
Walk Time (s)		7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0	0	0	0
Act Effct Green (s)	26.5	193.7	162.6	162.6	27.6	27.6
Actuated g/C Ratio	0.11	0.83	0.70	0.70	0.12	0.12
v/c Ratio	0.80	0.68	1.40	0.62	0.68	0.90
Control Delay	116.4	9.0	212.0	16.9	104.0	66.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.7
-	116.4					
Total Delay	116.4	9.0	212.0	16.9	104.0	67.3

US280 at Shades Crest 02/25/2019 2019 AM

	ሻ	1	ţ	J.	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
LOS	F	A	F	В	F	E
Approach Delay		19.6	187.5		87.5	
Approach LOS		В	F		F	
Stops (vph)	298	1047	3335	276	305	110
Fuel Used(gal)	14	36	277	10	11	5
CO Emissions (g/hr)	983	2496	19331	664	753	379
NOx Emissions (g/hr)	191	486	3761	129	146	74
VOC Emissions (g/hr)	228	579	4480	154	174	88
Dilemma Vehicles (#)	0	61	22	0	0	0
Queue Length 50th (ft)	247	554	~3718	421	215	214
Queue Length 95th (ft)	311	703	#3894	667	227	267
Internal Link Dist (ft)		536	411		334	
Turn Bay Length (ft)	350				100	100
Base Capacity (vph)	524	4238	3559	1162	763	413
Starvation Cap Reductn	0	0	0	0	0	9
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.60	0.68	1.40	0.62	0.53	0.82
Intersection Summary						
Area Type:	Other					
Cycle Length: 240						
Actuated Cycle Length: 23	2.3					
Natural Cycle: 150						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.40						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	zation 118.0%	, D		IC	U Level c	of Service H
Analysis Period (min) 15						
~ Volume exceeds capa	city, queue is	theoretic	cally infinit	e.		
Queue shown is maxim	num after two	cycles.				
# 95th percentile volume	exceeds cap	bacity, qu	leue may	be longer.		
Queue shown is maxim	num after two	cycles.				
Calita and Dhasaay 1, D	aalay Didaa D		200			
Splits and Phases: 1: Re	ocky Ridge R	a & US-2	280			

¥	4	-	4	-	*	~
		7	,	~		-
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations	ሽ	1			↑	1
Traffic Volume (vph)	264	19	17	325	693	284
Future Volume (vph)	264	19	17	325	693	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	100	125			0
Storage Lanes	1	1	1			1
Taper Length (ft)	75		75			
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00
Frt		0.850				0.850
FIt Protected	0.950			0.997		
Satd. Flow (prot)	1770	1583	0	3529	1863	1583
Flt Permitted	0.950			0.894		
Satd. Flow (perm)	1770	1583	0	3164	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		21				305
Link Speed (mph)	25			40	40	500
Link Distance (ft)	484			376	414	
Travel Time (s)	13.2			6.4	7.1	
Peak Hour Factor	0.90	0.90	0.87	0.4	0.93	0.93
Adj. Flow (vph)	293	0.90	20	374	745	305
Shared Lane Traffic (%)	293	21	20	514	745	303
	293	21	0	394	745	305
Lane Group Flow (vph)			•			
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4	4	^	6	2	0
Permitted Phases		4	6	^	^	2
Detector Phase	4	4	6	6	2	2
Switch Phase		_				
Minimum Initial (s)	7.0	7.0	12.0	12.0	12.0	12.0
Minimum Split (s)	22.5	22.5	23.0	23.0	23.0	23.0
Total Split (s)	32.0	32.0	45.0	45.0	45.0	45.0
Total Split (%)	41.6%	41.6%	58.4%	58.4%	58.4%	58.4%
Maximum Green (s)	27.7	27.7	40.0	40.0	40.0	40.0
Yellow Time (s)	3.1	3.1	3.8	3.8	3.8	3.8
All-Red Time (s)	1.2	1.2	1.2	1.2	1.2	1.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.3	4.3		5.0	5.0	5.0
Lead/Lag				0.0	0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5	1.5	3.0	3.0	3.0	3.0
Recall Mode	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	7.0 8.0	8.0	8.0	8.0	8.0	8.0
. ,			0.0 0			
Pedestrian Calls (#/hr)	0	0	U	0	0	0
Act Effct Green (s)	27.7	27.7		40.0	40.0	40.0
Actuated g/C Ratio	0.36	0.36		0.52	0.52	0.52
v/c Ratio	0.46	0.04		0.24	0.77	0.32
Control Delay	21.8	7.4		10.6	21.6	2.2
Queue Delay	0.0	0.0		0.0	10.4	0.0
Total Delay	21.8	7.4		10.6	32.0	2.2

US280 at Shades Crest 02/25/2019 2019 AM

	_#	\mathbf{F}	•	×	*	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
LOS	С	А		В	С	А
Approach Delay	20.9			10.6	23.4	
Approach LOS	С			В	С	
Stops (vph)	196	6		176	536	21
Fuel Used(gal)	3	0		3	10	1
CO Emissions (g/hr)	211	9		234	717	79
NOx Emissions (g/hr)	41	2		46	140	15
VOC Emissions (g/hr)	49	2		54	166	18
Dilemma Vehicles (#)	0	0		22	45	0
Queue Length 50th (ft)	106	0		51	267	0
Queue Length 95th (ft)	175	14		73	415	35
Internal Link Dist (ft)	404			296	334	
Turn Bay Length (ft)		100				
Base Capacity (vph)	636	582		1643	967	968
Starvation Cap Reductn	0	0		0	200	0
Spillback Cap Reductn	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0
Reduced v/c Ratio	0.46	0.04		0.24	0.97	0.32
Intersection Summary						
Area Type:	Other					
Cycle Length: 77						
Actuated Cycle Length: 77						
Natural Cycle: 60						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.77						
Intersection Signal Delay: 2	20.1			In	tersection	LOS: C
Intersection Capacity Utiliz	ation 58.8%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 2: Rocky Ridge Rd & Shades Crest Rd

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	∕	-+	\mathbf{r}	4	+	•	1	t	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIX	TIDE	4	TIDI(<u> </u>	1	NBR	<u> </u>	<u>الان</u>	OBIG
Traffic Volume (vph)	26	11	15	82	11	86	14	314	55	92	500	35
Future Volume (vph)	20	11	15	82	11	86	14	314	55	92 92	500	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	001	75	1900	0	1900	1900	
Storage Length (ft)	0		0	0			10		0	1		0
Storage Lanes			U			0			U	-		U
Taper Length (ft)	25	4 00	4 00	25	4 00	4 00	25	4 00	4 00	25	4 00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.960			0.935		0.050	0.977		0.050	0.990	_
Flt Protected	_	0.976	<u>,</u>	•	0.978	<u>,</u>	0.950	4000	<u>,</u>	0.950	1011	
Satd. Flow (prot)	0	1745	0	0	1703	0	1770	1820	0	1770	1844	0
Flt Permitted		0.849	-		0.822	-	0.293			0.499		
Satd. Flow (perm)	0	1518	0	0	1432	0	546	1820	0	930	1844	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			59			22			9	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.76	0.76	0.76	0.88	0.88	0.88	0.88	0.88	0.88	0.77	0.77	0.77
Adj. Flow (vph)	34	14	20	93	13	98	16	357	63	119	649	45
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	68	0	0	204	0	16	420	0	119	694	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		2	2	
Switch Phase		-					-	-				
Minimum Initial (s)	7.0	7.0		7.0	7.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	24.0	24.0		24.0	24.0		52.0	52.0		52.0	52.0	
Total Split (%)	31.6%	31.6%		31.6%	31.6%		68.4%	68.4%		68.4%	68.4%	
Maximum Green (s)	20.0	20.0		20.0	20.0		46.9	46.9		46.9	46.9	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	0.0	0.0		0.0	0.0		1.1	1.1		1.1	1.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		5.1	5.1		5.1	5.1	
. ,		4.0			4.0		5.1	0.1		5.1	5.1	
Lead/Lag Lead-Lag Optimize?												
U	0.7	0.7		0.7	0.7		2.0	2.0		2.0	2.0	
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.2	3.2		3.2	3.2	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		10.8			10.8		27.5	27.5		27.5	27.5	
Actuated g/C Ratio		0.22			0.22		0.57	0.57		0.57	0.57	
v/c Ratio		0.19			0.55		0.05	0.40		0.22	0.66	
Control Delay		14.5			19.3		5.6	7.0		6.8	10.8	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		14.5			19.3		5.6	7.0		6.8	10.8	
LOS		В			В		А	А		А	В	
Approach Delay		14.5			19.3			6.9			10.2	
Approach LOS		В			В			А			В	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 School PM

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	۶	+	*	4	Ļ	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		30			105		7	167		39	319	
Fuel Used(gal)		0			2		0	2		1	4	
CO Emissions (g/hr)		27			141		6	148		38	284	
NOx Emissions (g/hr)		5			27		1	29		7	55	
VOC Emissions (g/hr)		6			33		1	34		9	66	
Dilemma Vehicles (#)		0			13		0	0		0	0	
Queue Length 50th (ft)		9			29		2	45		12	97	
Queue Length 95th (ft)		37			109		9	122		36	197	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		683			667		500	1669		852	1690	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.10			0.31		0.03	0.25		0.14	0.41	
Intersection Summary												
Area Type:	Other											
Cycle Length: 76												
Actuated Cycle Length: 48												
Natural Cycle: 60												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 10					tersection							
Intersection Capacity Utilization	tion 65.4%			IC	CU Level c	of Service	С					
Analysis Period (min) 15												

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

↓ ø2	★ Ø4
52 s	24 s
√ ¶ø6	<u>↓</u> ₂₈
52 s	24 s

	-	2	3	×	*	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	5	1	5		4Î	
Traffic Volume (vph)	75	298	205	154	149	107
Future Volume (vph)	75	298	205	154	149	107
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	50	0	100	1000		0
Storage Lanes	1	1	1			0
Taper Length (ft)	25		25			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.948	1.00
Flt Protected	0.950	0.000	0.950		0.040	
Satd. Flow (prot)	1787	1599	1787	1881	1783	0
Flt Permitted	0.950	1399	0.478	1001	1705	U
		1500		1001	1700	0
Satd. Flow (perm)	1787	1599 Xoo	899	1881	1783	0
Right Turn on Red		Yes			20	Yes
Satd. Flow (RTOR)	05	608		05	36	
Link Speed (mph)	25			35	35	
Link Distance (ft)	737			474	400	
Travel Time (s)	20.1			9.2	7.8	
Peak Hour Factor	0.49	0.49	0.94	0.83	0.82	0.94
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	153	608	218	186	182	114
Shared Lane Traffic (%)						
Lane Group Flow (vph)	153	608	218	186	296	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		1	6	2	
Permitted Phases		4	6	6		
Detector Phase	4	4	1	6	2	
Switch Phase						
Minimum Initial (s)	12.0	12.0	10.0	20.0	20.0	
Minimum Split (s)	16.5	16.5	14.5	24.5	24.5	
Total Split (s)	34.0	34.0	24.0	39.5	39.5	
Total Split (%)	34.9%	34.9%	24.6%	40.5%	40.5%	
Maximum Green (s)	30.0	30.0	20.0	35.0	35.0	
Yellow Time (s)	3.0	3.0	3.0	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
	0.0	0.0	0.0	0.0	0.0	
Lost Time Adjust (s)						
Total Lost Time (s)	4.0	4.0	4.0	4.5	4.5	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	• •		Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Max	Max	
Walk Time (s)					7.0	
Flash Dont Walk (s)					11.0	
Pedestrian Calls (#/hr)					0	
Act Effct Green (s)	14.4	14.4	50.2	49.7	35.2	
Actuated g/C Ratio	0.20	0.20	0.69	0.68	0.48	
v/c Ratio	0.43	0.76	0.29	0.14	0.34	
Control Delay	29.5	9.3	5.6	4.9	12.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	

2019 AM 02/06/2019 Baseline Sain Associates

	4	2	3	×	*	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Total Delay	29.5	9.3	5.6	4.9	12.3	
LOS	С	А	А	А	В	
Approach Delay	13.3			5.3	12.3	
Approach LOS	В			А	В	
Stops (vph)	61	34	67	50	133	
Fuel Used(gal)	1	3	1	1	2	
CO Emissions (g/hr)	81	179	101	74	166	
NOx Emissions (g/hr)	16	35	20	14	32	
VOC Emissions (g/hr)	19	42	23	17	39	
Dilemma Vehicles (#)	0	0	0	8	17	
Queue Length 50th (ft)	60	0	24	21	61	
Queue Length 95th (ft)	58	0	73	57	133	
Internal Link Dist (ft)	657			394	320	
Turn Bay Length (ft)	50		100			
Base Capacity (vph)	741	1019	867	1535	881	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.21	0.60	0.25	0.12	0.34	
Intersection Summary						
Area Type:	Other					
Cycle Length: 97.5						
Actuated Cycle Length: 72	2.6					
Natural Cycle: 60						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.76						
Intersection Signal Delay: 10.9					tersectior	LOS: B
Intersection Capacity Utiliz	zation 48.4%			IC	U Level o	of Service A
Analysis Period (min) 15						

Splits and Phases: 1: Dolly Ridge Rd & Gresham Dr

7 Ø1	¥ _{Ø2}	∭ Ø4
24 s	39.5 s	34 s
¥ø6		
39.5 s		

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	≯	→	\mathbf{F}	4	Ļ	•	•	t	*	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲.	4Î		5	eî.	
Traffic Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Future Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25		•	25		•	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.970			0.935			0.954			0.990	
Flt Protected		0.981			0.978		0.950	0.001		0.950	0.000	
Satd. Flow (prot)	0	1773	0	0	1703	0	1770	1777	0	1770	1844	0
Flt Permitted	Ŭ	0.786	Ű	Ű	0.810	Ű	0.220		Ű	0.366	1011	Ű
Satd. Flow (perm)	0	1420	0	0	1411	0	410	1777	0	682	1844	0
Right Turn on Red	Ŭ	1120	Yes	U		Yes	110		Yes	002	1011	Yes
Satd. Flow (RTOR)		18	100		59	100		52	100		8	100
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.76	0.76	0.76	0.88	0.88	0.88	0.88	0.88	0.88	0.77	0.2	0.77
Adj. Flow (vph)	34	36	20	251	34	263	16	357	156	297	649	45
Shared Lane Traffic (%)	54	50	20	201	54	205	10	551	150	231	049	40
Lane Group Flow (vph)	0	90	0	0	548	0	16	513	0	297	694	0
Turn Type	Perm	90 NA	0	Perm	NA	U	Perm	NA	0	Perm	NA	U
Protected Phases	Feilli	8		Feim	4		Feilli	6		reiiii	2	
Permitted Phases	8	0		1	4		6	0		2	2	
Detector Phase	8	8		4	4		6	6		2	2	
Switch Phase	0	0		4	4		0	0		2	2	
Minimum Initial (s)	7.0	7.0		7.0	7.0		15.0	15.0		15.0	15.0	
()	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	25.0	25.0		25.0	25.0		20.0 51.0	20.0 51.0		20.0 51.0	20.0 51.0	
Total Split (s)								67.1%			67.1%	
Total Split (%)	32.9%	32.9%		32.9%	32.9%		67.1% 46.0			67.1%		
Maximum Green (s)	20.0	20.0		20.0	20.0			46.0		46.0	46.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	_
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.2	3.2		3.2	3.2	_
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Act Effct Green (s)		20.6			20.6		31.4	31.4		31.4	31.4	
Actuated g/C Ratio		0.33			0.33		0.50	0.50		0.50	0.50	
v/c Ratio		0.19			1.08		0.08	0.56		0.87	0.74	
Control Delay		17.4			89.5		7.6	11.2		38.8	16.9	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		17.4			89.5		7.6	11.2		38.8	16.9	
LOS		В			F		А	В		D	В	
Approach Delay		17.4			89.5			11.1			23.4	
Approach LOS		В			F			В			С	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 School PM with Trip Gen

Lanes, Volumes, Timings 1: Rocky Ridge Rd & Dolly Ridge Rd

	۶	-	\mathbf{F}	4	←	•	٠	Ť	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		42			305		7	237		177	365	
Fuel Used(gal)		1			12		0	3		3	5	
CO Emissions (g/hr)		39			872		6	221		229	348	
NOx Emissions (g/hr)		8			170		1	43		44	68	
VOC Emissions (g/hr)		9			202		1	51		53	81	
Dilemma Vehicles (#)		0			30		0	0		0	0	
Queue Length 50th (ft)		19			~226		3	105		88	183	
Queue Length 95th (ft)		51			#493		10	165		143	215	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		481			506		312	1365		519	1405	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.19			1.08		0.05	0.38		0.57	0.49	
Intersection Summary												
Area Type: 0	Other											
Cycle Length: 76												
Actuated Cycle Length: 62.3												
Natural Cycle: 65												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 1.08												
Intersection Signal Delay: 37					ntersection							
Intersection Capacity Utilizati	ion 88.1%			10	CU Level c	of Service	E					
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maximum												
# 95th percentile volume ex			eue may l	be longe	r.							
Queue shown is maximum	n after two	cycles.										

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

↓ ø ₂	₩ Ø4
51s	25 s
	<u>↓</u> ₂₈
51 s	25 s

Lanes, Volumes, Timings
3: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	۶	-	\mathbf{F}	4	+	•	•	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	<u></u>	1	ľ	<u></u>	1
Traffic Volume (vph)	184	109	20	57	34	112	16	1256	226	118	255	31
Future Volume (vph)	184	109	20	57	34	112	16	1256	226	118	255	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	115		0	140		350
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.991			0.925				0.850			0.850
Flt Protected		0.971			0.986		0.950			0.950		
Satd. Flow (prot)	0	1792	0	0	1699	0	1770	3539	1583	1770	3539	1583
Flt Permitted		0.638			0.825		0.950			0.071		
Satd. Flow (perm)	0	1178	0	0	1422	0	1770	3539	1583	132	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			55				207			89
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		493			298			271			469	
Travel Time (s)		11.2			6.8			4.1			7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	200	118	22	62	37	122	17	1365	246	128	277	34
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	340	0	0	221	0	17	1365	246	128	277	34
Turn Type	Perm	NA		Perm	NA		Prot	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8					2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		5.0	18.0	18.0	5.0	18.0	18.0
Minimum Split (s)	24.0	24.0		24.0	24.0		12.0	23.5	23.5	24.0	23.5	23.5
Total Split (s)	36.0	36.0		36.0	36.0		12.0	50.0	50.0	24.0	62.0	62.0
Total Split (%)	32.7%	32.7%		32.7%	32.7%		10.9%	45.5%	45.5%	21.8%	56.4%	56.4%
Maximum Green (s)	30.0	30.0		30.0	30.0		6.0	44.5	44.5	18.0	56.5	56.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.0	4.0	4.0	3.0	4.0	4.0
All-Red Time (s)	2.5	2.5		2.5	2.5		3.0	1.5	1.5	3.0	1.5	1.5
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	5.5	5.5	6.0	5.5	5.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.5	3.5	2.0	3.5	3.5
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	C-Min
Walk Time (s)	7.0	7.0										_
Flash Dont Walk (s)	10.0	10.0										
Pedestrian Calls (#/hr)	0	0			00.7			50.0	50.0	00.0	00.0	00.0
Act Effct Green (s)		30.7			30.7		5.5	53.3	53.3	66.8	63.0	63.0
Actuated g/C Ratio		0.28			0.28		0.05	0.48	0.48	0.61	0.57	0.57
v/c Ratio		1.03			0.51		0.19	0.80	0.28	0.62	0.14	0.04
Control Delay		97.1			29.7		55.1	28.5	4.7	31.5	10.5	0.5
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		97.1			29.7		55.1	28.5	4.7	31.5	10.5	0.5

Baseline

Lanes, Volumes, Timings
3: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	۶	-	\mathbf{F}	4	+	*	٩.	Ť	۲	1	ŧ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		F			С		E	С	А	С	В	А
Approach Delay		97.1			29.7			25.2			15.9	
Approach LOS		F			С			С			В	
Stops (vph)		257			129		17	1016	29	59	114	1
Fuel Used(gal)		9			2		0	22	1	2	3	0
CO Emissions (g/hr)		616			169		29	1547	68	129	192	8
NOx Emissions (g/hr)		120			33		6	301	13	25	37	1
VOC Emissions (g/hr)		143			39		7	359	16	30	44	2
Dilemma Vehicles (#)		0			0		0	57	0	0	10	0
Queue Length 50th (ft)		~261			98		12	400	14	41	46	0
Queue Length 95th (ft)		#446			177		35	541	62	106	63	0
Internal Link Dist (ft)		413			218			191			389	
Turn Bay Length (ft)							115			140		350
Base Capacity (vph)		331			436		96	1714	873	348	2026	944
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		1.03			0.51		0.18	0.80	0.28	0.37	0.14	0.04
Intersection Summary												
	Other											
Cycle Length: 110												
Actuated Cycle Length: 110												
Offset: 0 (0%), Referenced to	phase 2:1	NBT and (5:SBTL, S	Start of G	reen, Mas	ster Inters	ection					
Natural Cycle: 110												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 1.03	•											
Intersection Signal Delay: 33					tersectior		_					
Intersection Capacity Utilizati	ion 89.1%			IC	CU Level o	of Service	E					_
Analysis Period (min) 15	· · · · ·	ae.	. II. 1. 6 . 11									
 Volume exceeds capacity 			ally infinit	e.								
Queue shown is maximum				ha lana								
# 95th percentile volume ex			eue may i	be longer	•							
Queue shown is maximun	n atter two	cycles.										

Splits and Phases: 3: Columbiana Rd & Shades Crest Rd/Vestaview Ln

Ø1	Ø2 (R)	A ₀₄
24 s	50 s	36 s
▲ ø5	€ Ø6 (R) .	↓ Ø8
12 s	62 s	36 s

	4	•	†	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		VDR				
Ŭ	11 58	74	1210	r 342	ר 79	*
Traffic Volume (vph) Future Volume (vph)	58	74 74	1210 1210	342 342	79 79	346 346
Ideal Flow (vphpl)	1900	1900	1210	342 1900	1900	346 1900
(, , , ,	1900	1900	1900	1900	1900	1900
Storage Length (ft)	1	0		100	150	
Storage Lanes		0		I		
Taper Length (ft)	25	1.00	0.05	1.00	25	0.05
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt Fit Drotocted	0.924			0.850	0.050	
Fit Protected	0.978	0	2520	4500	0.950	2520
Satd. Flow (prot)	1683	0	3539	1583	1770	3539
Fit Permitted	0.978	^	0500	4500	0.158	0500
Satd. Flow (perm)	1683	0	3539	1583	294	3539
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	52			329		
Link Speed (mph)	30		45			45
Link Distance (ft)	299		469			333
Travel Time (s)	6.8		7.1			5.0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	63	80	1315	372	86	376
Shared Lane Traffic (%)						
Lane Group Flow (vph)	143	0	1315	372	86	376
Turn Type	Prot		NA	Perm	pm+pt	NA
Protected Phases	8		2		1	6
Permitted Phases				2	6	
Detector Phase	8		2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0		18.0	18.0	5.0	18.0
Minimum Split (s)	22.5		22.5	22.5	9.5	22.5
Total Split (s)	26.0		71.0	71.0	13.0	84.0
Total Split (%)	23.6%		64.5%	64.5%	11.8%	76.4%
Maximum Green (s)	21.5		66.5	66.5	8.5	79.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
Lead/Lag	4.5				Lead	4.5
			Lag	Lag		
Lead-Lag Optimize?	۲ 0		Yes	Yes	Yes	2.0
Vehicle Extension (s)	5.0		3.0	3.0	3.0	3.0
Recall Mode	None		C-Min	C-Min	None	C-Min
Walk Time (s)			7.0	7.0		7.0
Flash Dont Walk (s)			11.0	11.0		11.0
Pedestrian Calls (#/hr)			0	0		0
Act Effct Green (s)	13.3		78.5	78.5	87.7	87.7
Actuated g/C Ratio	0.12		0.71	0.71	0.80	0.80
v/c Ratio	0.57		0.52	0.30	0.27	0.13
Control Delay	37.1		4.0	0.4	5.0	3.0
Queue Delay	0.0		0.2	0.3	0.0	0.0
Total Delay	37.1		4.2	0.7	5.0	3.0

Baseline

	4	*	1	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
LOS	D		А	Α	А	A
Approach Delay	37.1		3.4			3.4
Approach LOS	D		А			А
Stops (vph)	78		258	1	17	74
Fuel Used(gal)	2		8	1	0	2
CO Emissions (g/hr)	121		550	76	32	131
NOx Emissions (g/hr)	24		107	15	6	26
VOC Emissions (g/hr)	28		128	18	7	30
Dilemma Vehicles (#)	0		40	0	0	16
Queue Length 50th (ft)	61		94	0	10	25
Queue Length 95th (ft)	119		m42	m0	26	46
Internal Link Dist (ft)	219		389			253
Turn Bay Length (ft)				160	150	
Base Capacity (vph)	370		2524	1223	348	2820
Starvation Cap Reductn	0		437	358	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.39		0.63	0.43	0.25	0.13
Intersection Summary						
Area Type:	Other					
Cycle Length: 110						
Actuated Cycle Length: 11						
Offset: 15 (14%), Reference	ced to phase	2:NBT an	d 6:SBTL	., Start of	Green	
Natural Cycle: 60						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.57						
Intersection Signal Delay:					tersectior	
Intersection Capacity Utiliz	zation 56.8%			IC	U Level o	of Service
Analysis Period (min) 15						
m Volume for 95th perce	entile queue is	metered	l by upstre	eam signa	al.	

Splits and Phases: 6: Columbiana Rd & Shades Crest Rd

	Ţ	ì	3	×	*	¥
Lane Group	SEL	SER	NEL	NET	SWT	SWR
						SVIR
Lane Configurations				258	1 43	FG
Traffic Volume (vph)	190	371	635	258	143	56 56
Future Volume (vph)	190	371	635	258	143	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	300			0
Storage Lanes	1	1	1			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.951	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1787	1599	1787	1881	1789	0
Flt Permitted	0.950		0.263			
Satd. Flow (perm)	1787	1599	495	1881	1789	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		640			26	
Link Speed (mph)	25			35	35	
Link Distance (ft)	737			474	400	
Travel Time (s)	20.1			9.2	7.8	
Peak Hour Factor	0.58	0.58	0.57	0.83	0.82	0.57
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
	328	640	1114	311	176	98
Adj. Flow (vph)	320	040	1114	311	174	90
Shared Lane Traffic (%)	200	040		044	070	0
Lane Group Flow (vph)	328	640	1114	311	272	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		1	6	2	
Permitted Phases		4	6			
Detector Phase	4	4	1	6	2	
Switch Phase						
Minimum Initial (s)	12.0	12.0	10.0	20.0	20.0	
Minimum Split (s)	16.0	16.0	14.0	24.5	24.5	
Total Split (s)	22.5	22.5	52.0	77.5	25.5	
Total Split (%)	22.5%	22.5%	52.0%	77.5%	25.5%	
Maximum Green (s)	18.5	18.5	48.0	73.0	21.0	
Yellow Time (s)	3.0	3.0	3.0	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
,	4.0	4.0	4.0	4.5	4.5	
Total Lost Time (s)	4.0	4.0		4.5		
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	5.0	5.0	Yes	0.0	Yes	
Vehicle Extension (s)	5.0	5.0	3.0	3.2	3.2	
Recall Mode	None	None	None	Min	Min	
Act Effct Green (s)	18.5	18.5	72.9	72.4	20.4	
Actuated g/C Ratio	0.19	0.19	0.73	0.73	0.21	
v/c Ratio	0.99	0.78	1.13	0.23	0.70	
Control Delay	88.6	10.8	91.8	4.9	43.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	88.6	10.8	91.8	4.9	43.9	
LOS	F	В	F	A	D	
Approach Delay	37.2	2	•	72.8	43.9	
	J1.Z			12.0	40.3	

2019 AM 02/06/2019 Baseline Sain Associates

	4	2	3	×	×	*			
Lane Group	SEL	SER	NEL	NET	SWT	SWR			
Approach LOS	D			E	D				
Stops (vph)	163	39	449	75	165				
Fuel Used(gal)	5	3	17	2	4				
CO Emissions (g/hr)	367	231	1217	119	251				
NOx Emissions (g/hr)	71	45	237	23	49				
VOC Emissions (g/hr)	85	53	282	28	58				
Dilemma Vehicles (#)	0	0	0	9	9				
Queue Length 50th (ft)	208	0	~737	54	146				
Queue Length 95th (ft)	184	0	325	75	208				
Internal Link Dist (ft)	657			394	320				
Turn Bay Length (ft)			300						
Base Capacity (vph)	332	818	986	1381	398				
Starvation Cap Reductn	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0				
Reduced v/c Ratio	0.99	0.78	1.13	0.23	0.68				
Intersection Summary	Intersection Summary								
/1	Other								
Cycle Length: 100									
Actuated Cycle Length: 99.4	4								
Natural Cycle: 140									
Control Type: Actuated-Unc	coordinated								
Maximum v/c Ratio: 1.13									
Intersection Signal Delay: 5					tersection				
Intersection Capacity Utiliza	ation 72.8%			IC	U Level o	of Service C			
Analysis Period (min) 15									
 Volume exceeds capaci 			ally infinit	e.					
Queue shown is maximu	im after two	cycles.							
Calita and Dhasaay 1, Dal		0.0	D						

 Splits and Phases:
 1: Dolly Ridge Rd & Gresham Dr

 Ø1
 Ø2
 Ø4

 52 s
 25.5 s
 22.5 s

 Ø6
 25.5 s
 22.5 s

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

Lane Configurations Y		≯	+	*	4	+	×	•	†	1	1	ţ	~
Lane Configurations Y	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 313 48 14 155 61 270 30 2032 114 46 726 Future Volume (vph) 313 48 14 155 61 270 30 2032 114 46 726 Future Volume (vph) 1900 1100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.													1
Future Volume (vph) 313 48 14 155 61 270 30 2032 114 46 726 Ideal Flow (vphp) 1900				14			270	-					35
Ideal Flow (vphp) 1900 <td>,</td> <td></td> <td>35</td>	,												35
Storage Length (ft) 250 0 250 0 300 175 0 1 Storage Lanes 1 0 1 0 1	、、、、												1900
Storage Lanes 1 0 1 0 1 1 1 Tape Length (ft) 25 <td>,</td> <td></td> <td>375</td>	,												375
Taper Length (ft) 25 25 25 25 Lane Uii. Factor 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.850 0.95 Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.030 Fit Protected 0.910 1770 1635 0 1770 3539 1583 1770 3539 1583 163 353 1583 1770 3539 1583 156 3539 1583 56 3539 1583 168 1770 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 502 110 1115 6.00 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7													1
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.950		25		•	25					•	25		•
Frit 0.966 0.878 0.850 0.50 Flt Protected 0.950 <			1.00	1.00		1.00	1.00		0.95	1.00		0.95	1.00
Fit Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1799 0 1770 1635 0 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 502 110 110 111 110 111 110 111 110 111 119 56 885 158 1770 179 110 111 119 56 885 110 111 119 56 885 110 110 110 110 111 119 56 885 110 <									0.00			0.00	0.850
Satd. Flow (prot) 1770 1799 0 1770 1635 0 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 1583 56 3539 158 56 55 55 55 55 55 55 55 56		0.950	01000		0.950	0.0.0		0.950			0.950		
Fit Permitted 0.140 0.697 0.950 0.030 Satd. Flow (perm) 261 1799 0 1298 1635 0 1770 3539 1583 56 3539 11 Right Turn on Red Yes Yes <td></td> <td></td> <td>1799</td> <td>0</td> <td></td> <td>1635</td> <td>0</td> <td></td> <td>3539</td> <td>1583</td> <td></td> <td>3539</td> <td>1583</td>			1799	0		1635	0		3539	1583		3539	1583
Satd. Flow (perm) 261 1799 0 1298 1635 0 1770 3539 1583 56 3539 14 Right Turn on Red Yes Y				•			Ţ						
Right Turn on Red Yes			1799	0		1635	0		3539	1583		3539	1583
Satd. Flow (RTOR) 6 87 55 Link Speed (mph) 30 30 45 45 Link Distance (ft) 482 504 393 502 Travel Time (s) 11.0 11.5 6.0 7.6 Peak Hour Factor 0.82 0.82 0.82 0.82 0.96 0.96 0.96 0.82 0.82 0.82 Adj. Flow (vph) 382 59 17 189 74 329 31 2117 119 56 885 Shared Lane Traffic (%) Lane Group Flow (vph) 382 76 0 189 403 0 31 2117 119 56 885 Tum Type pm+pt NA pm+pt NA Permitted Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 2 1 6 Switch Phase 70 7.0 7.0	N 7	201		-	1200	1000			0000			0000	Yes
Link Speed (mph) 30 30 45 45 Link Distance (ft) 482 504 393 502 Travel Time (s) 11.0 11.5 6.0 7.6 Peak Hour Factor 0.82 0.82 0.82 0.82 0.82 0.82 0.96 0.96 0.96 0.82 0.85 0.85 0.85			6	100		87							55
Link Distance (ft) 482 504 393 502 Travel Time (s) 11.0 11.5 6.0 7.6 Peak Hour Factor 0.82									45	00		45	
Travel Time (s) 11.0 11.5 6.0 7.6 Peak Hour Factor 0.82 0.82 0.82 0.82 0.82 0.96 0.96 0.96 0.82 0.82 0.82 Adj. Flow (vph) 382 59 17 189 74 329 31 2117 119 56 885 Shared Lane Traffic (%)													
Peak Hour Factor 0.82 0.82 0.82 0.82 0.82 0.82 0.96 0.96 0.96 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.96 0.96 0.96 0.82 0.83 0 31 2117 119 56 885 11 11 11 11 11 56 885 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Adj. Flow (vph) 382 59 17 189 74 329 31 2117 119 56 885 Shared Lane Traffic (%) Lane Group Flow (vph) 382 76 0 189 403 0 31 2117 119 56 885 Turn Type pm+pt NA pm+pt NA Prot NA Perm pm+pt NA Perm Protected Phases 7 4 3 8 5 2 1 6 Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase 7 4 3 8 5 2 0 7.0 20.0 20.0 7.0 20.0 20.0 7.0 20.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 22.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	\ /	0.82		0.82	0.82		0.82	0.96		0.96	0.82		0.82
Shared Lane Traffic (%) Lane Group Flow (vph) 382 76 0 189 403 0 31 2117 119 56 885 Turn Type pm+pt NA pm+pt NA Prot NA Perm pm+pt NA Perm Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 6 6 Detector Phase 7 4 3 8 5 2 1 6 Switch Phase 7 4 3 8 5 2 0 7.0 20.0 20.0 7.0 20.0 20.0 7.0 20.0 2 2 16 5 5 5 12.0 29.5 12.0 29.5 12.0 25.0 12.0 25.0 12.0 25.0 12.0 25.0 12.0 25.0 12.0 25.0 12.0 25.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0													43
Lane Group Flow (vph) 382 76 0 189 403 0 31 2117 119 56 885 Turn Type pm+pt NA pm+pt NA Prot NA Perm pm+pt NA Perm Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 6 2 6 Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase 7 4 3 8 5 2 2 1 6 Minimum Initial (s) 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0		002		••	100		020	0.					
Turn Type pm+pt NA pm+pt NA Prot NA Perm pm+pt NA Perm Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 6 6 Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase 7 4 3 8 5 2 2 1 6 Minimum Initial (s) 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0 25.0 13.0.0 130.0 <td>. ,</td> <td>382</td> <td>76</td> <td>0</td> <td>189</td> <td>403</td> <td>0</td> <td>31</td> <td>2117</td> <td>119</td> <td>56</td> <td>885</td> <td>43</td>	. ,	382	76	0	189	403	0	31	2117	119	56	885	43
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 6 2 6 Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase 7 4 3 8 5 2 2 1 6 Minimum Initial (s) 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0 130.0 10.0 130.0 20.0 130.0 130.0 20.0 130.0 130.0 130.0 130.0 130.0 130.0 1	,			Ū			Ū						Perm
Permitted Phases 4 8 2 6 Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase													. •
Detector Phase 7 4 3 8 5 2 2 1 6 Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20		4				-		-	_	2	6	-	6
Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0 130.0 20.0 20.0 130.0 20.0 130.0 10.0 130.0 130.0 20.0 130.0			4			8		5	2			6	6
Minimum Initial (s)7.07.07.07.07.020.020.07.020.0130.020.0130.					-			-					-
Minimum Split (s)12.029.512.029.512.025.025.012.025.02Total Split (s)30.030.030.030.020.0130.0130.020.0130.013Total Split (%)14.3%14.3%14.3%14.3%9.5%61.9%61.9%9.5%61.9%61Maximum Green (s)25.525.525.525.515.5125.0125.015.5125.012Yellow Time (s)3.53.53.53.54.04.04.04.04.0All-Red Time (s)1.01.01.01.00.51.01.01.0Lost Time Adjust (s)0.00.00.00.00.00.00.00.0Total Lost Time (s)4.54.54.54.55.05.04.55.0Lead/LagLeadLagLeadLagLagLeadLagLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLeadLagLagLeadLagLagLeadLagLagLagLagLagLagLagLagLagLagLagLagLagLagLagLagLagLagLagL		7.0	7.0		7.0	7.0		7.0	20.0	20.0	7.0	20.0	20.0
Total Split (s)30.030.030.030.030.020.0130.0130.020.0130.013Total Split (%)14.3%14.3%14.3%14.3%9.5%61.9%61.9%9.5%61.9%<	• • •												25.0
Total Split (%)14.3%14.3%14.3%14.3%9.5%61.9%9.5%61.9%<	,												130.0
Maximum Green (s) 25.5 25.5 25.5 25.5 15.5 125.0 10.0 10.0	,												61.9%
Yellow Time (s)3.53.53.53.54.04.04.04.0All-Red Time (s)1.01.01.01.00.51.01.00.51.0Lost Time Adjust (s)0.00.00.00.00.00.00.00.00.0Total Lost Time (s)4.54.54.54.55.05.04.55.0Lead/LagLeadLagLeadLagLeadLagLeadLagLeadLead-Lag Optimize?YesYesYesYesYesYesYesYesYesVehicle Extension (s)3.04.03.04.04.04.04.04.04.0												125.0	125.0
All-Red Time (s) 1.0 <td>()</td> <td></td> <td>4.0</td>	()												4.0
Lost Time Adjust (s) 0.0								0.5			0.5		1.0
Total Lost Time (s)4.54.54.54.54.55.05.05.0Lead/LagLeadLagLeadLagLeadLagLagLagLagLagLeadLagLagLeadLagLagLeadLagLagLeadLagL	()		0.0			0.0						0.0	0.0
Lead/LagLeadLagLeadLagLeadLagLagLagLagLead-Lag Optimize?YesYesYesYesYesYesYesYesYesYesVehicle Extension (s)3.04.03.04.04.04.04.04.04.0	,	4.5	4.5		4.5	4.5		4.5	5.0	5.0	4.5	5.0	5.0
Lead-Lag Optimize?Yes <th< td=""><td>()</td><td>Lead</td><td>Lag</td><td></td><td>Lead</td><td>Lag</td><td></td><td></td><td>Lag</td><td>Lag</td><td>Lead</td><td>Lag</td><td>Lag</td></th<>	()	Lead	Lag		Lead	Lag			Lag	Lag	Lead	Lag	Lag
Vehicle Extension (s) 3.0 4.0 3.0 4.0												-	Yes
	• •	3.0	4.0		3.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode None None None None None C-Min C-Min None C-Min C-	. ,		None		None				C-Min	C-Min	None	C-Min	C-Min
Walk Time (s) 7.0 7.0													
Flash Dont Walk (s) 18.0 18.0	()												
Pedestrian Calls (#/hr) 0 0	()												
	· · · · · ·	53.1			47.9			10.2	131.0	131.0	141.2	132.6	132.6
	()												0.63
													0.04
													2.0
,	,												0.0
,													2.0

US31 at Shades Crest Rd 02/25/2019 2019 AM Improved

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

	٦	-	\mathbf{F}	•	+	•	•	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	F	F		Е	F		F	D	А	D	С	А
Approach Delay		265.6			208.2			47.3			20.8	
Approach LOS		F			F			D			С	
Stops (vph)	192	51		130	176		29	1757	24	22	349	2
Fuel Used(gal)	22	2		4	21		1	47	1	1	10	0
CO Emissions (g/hr)	1504	107		248	1440		76	3295	56	59	678	11
NOx Emissions (g/hr)	293	21		48	280		15	641	11	11	132	2
VOC Emissions (g/hr)	348	25		58	334		18	764	13	14	157	2
Dilemma Vehicles (#)	0	0		0	0		0	47	0	0	17	0
Queue Length 50th (ft)	~692	90		218	~652		43	1391	33	26	317	0
Queue Length 95th (ft)	#813	138		275	#768		85	#1681	69	70	336	9
Internal Link Dist (ft)		402			424			313			422	
Turn Bay Length (ft)	250			250			300		175			375
Base Capacity (vph)	249	250		372	274		130	2207	1008	165	2234	1020
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	1.53	0.30		0.51	1.47		0.24	0.96	0.12	0.34	0.40	0.04
Intersection Summary												
Area Type:	Other											
Cycle Length: 210												
Actuated Cycle Length: 210												
Offset: 51 (24%), Reference	ed to phase	2:NBT an	d 6:SBTL	., Start of	Green							
Natural Cycle: 150												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 1.53												
Intersection Signal Delay: 86.6 Intersection LOS: F												
Intersection Capacity Utilization 105.0% ICU Level of Service G												
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maximum after two cycles.												
# 95th percentile volume			eue may l	be longer								
Queue shown is maximu	im after two	cycles.										

Splits and Phases: 1: US-31 & Shades Crest Rd

Ø1	Ø2 (R)	Ø3	A ₀₄
20 s	130 s	30 s	30 s
1 Ø5	Ø6 (R)	▶ _{Ø7}	₹ø8
20 s	130 s	30 s	30 s

Lanes, Volumes, Timings 1: Rocky Ridge Rd & US-280

	ሻ	1	ţ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations	ካካ	^	^	1	ኘካካ	1
Traffic Volume (vph)	274	3867	3020	191	448	159
Future Volume (vph)	274	3867	3020	191	448	159
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350	1300	1300	0	100	100
Storage Lanes	2			1	0	0
Taper Length (ft)	75			1	75	0
Lane Util. Factor	0.97	0.91	0.91	1.00	0.94	1.00
	0.97	0.91	0.91		0.94	
Frt	0.050			0.850	0.050	0.850
Flt Protected	0.950	5005	5005	4500	0.950	4500
Satd. Flow (prot)	3433	5085	5085	1583	4990	1583
Flt Permitted	0.950	F00-	5005	4=00	0.950	4500
Satd. Flow (perm)	3433	5085	5085	1583	4990	1583
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				79		173
Link Speed (mph)		55	55		40	
Link Distance (ft)		616	491		414	
Travel Time (s)		7.6	6.1		7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	298	4203	3283	208	487	173
Shared Lane Traffic (%)						
Lane Group Flow (vph)	298	4203	3283	208	487	173
Turn Type	Prot	NA	NA	Perm	Prot	Perm
Protected Phases	5	2	6	i onn	4	i onn
Permitted Phases	5	2	0	6	7	4
Detector Phase	5	2	6	6	4	4
Switch Phase	5	2	U	0	4	4
	8.0	10.0	12.0	12.0	0 0	8.0
Minimum Initial (s)		12.0			8.0	
Minimum Split (s)	12.5	24.5	24.5	24.5	22.5	22.5
Total Split (s)	40.0	200.0	160.0	160.0	40.0	40.0
Total Split (%)	16.7%	83.3%	66.7%	66.7%	16.7%	16.7%
Maximum Green (s)	35.5	193.5	153.5	153.5	35.5	35.5
Yellow Time (s)	3.5	5.5	5.5	5.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	6.5	6.5	6.5	4.5	4.5
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max	Max	Max	None	None
Walk Time (s)		7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0	0	0	0
Act Effct Green (s)	25.4	193.5	163.6	163.6	28.1	28.1
Actuated g/C Ratio	0.11	0.83	0.70	0.70	0.12	0.12
v/c Ratio	0.79	0.99	0.92	0.18	0.81	0.50
Control Delay	116.8	31.0	34.8	8.2	110.8	15.0
Queue Delay	0.0	0.0	0.0	0.0	0.3	0.1
Total Delay	116.8	31.0	34.8	8.2	111.1	15.1

US280 at Shades Crest 02/25/2019 2019 AM

Lanes, Volumes, Timings 1: Rocky Ridge Rd & US-280

	ሻ	Ť	Ļ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
LOS	F	С	С	А	F	В
Approach Delay		36.7	33.3		85.9	
Approach LOS		D	С		F	
Stops (vph)	263	3074	2378	40	431	16
Fuel Used(gal)	12	97	75	2	16	1
CO Emissions (g/hr)	872	6753	5242	116	1091	76
NOx Emissions (g/hr)	170	1314	1020	23	212	15
VOC Emissions (g/hr)	202	1565	1215	27	253	18
Dilemma Vehicles (#)	0	81	19	0	0	0
Queue Length 50th (ft)	234	2025	1478	61	263	0
Queue Length 95th (ft)	295	#2509	1793	118	311	85
Internal Link Dist (ft)		536	411		334	
Turn Bay Length (ft)	350				100	100
Base Capacity (vph)	524	4231	3577	1136	761	388
Starvation Cap Reductn	0	0	0	0	39	9
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.99	0.92	0.18	0.67	0.46
Intersection Summary						
Area Type:	Other					
Cycle Length: 240						
Actuated Cycle Length: 232	2.6					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.99						
Intersection Signal Delay: 3				In	tersection	LOS: D
Intersection Capacity Utilization	ation 92.4%			IC	U Level c	of Service F
Analysis Period (min) 15						
# 95th percentile volume	exceeds ca	pacity, qu	eue may	be longer.		
Queue shown is maxim	um after two	cycles.				
Splits and Phases: 1: Ro	ocky Ridge F	Rd & US-2	80			
	any mager					

↑ ø2		2 _{Ø4}
200 s		40 s
A Ø5	₩ Ø6	
40 s	160 s	

		7	•	*	×	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations	<u> </u>	1		4 ۴	<u>+</u>	1
Traffic Volume (vph)	151	22	7	456	294	171
Future Volume (vph)	151	22	7	456	294	171
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	1900	125	1300	1300	0
Storage Lanes	1	100	125			1
Taper Length (ft)	75	I	75			I
	1.00	1.00	0.95	0.95	1.00	1.00
Lane Util. Factor Frt	1.00	0.850	0.95	0.93	1.00	0.850
	0.050	0.850		0.000		0.850
Flt Protected	0.950	4500	0	0.999	4000	4500
Satd. Flow (prot)	1770	1583	0	3536	1863	1583
Flt Permitted	0.950	4500		0.950	1000	4500
Satd. Flow (perm)	1770	1583	0	3362	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		24				186
Link Speed (mph)	25			40	40	
Link Distance (ft)	484			376	414	
Travel Time (s)	13.2			6.4	7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	164	24	8	496	320	186
Shared Lane Traffic (%)						
Lane Group Flow (vph)	164	24	0	504	320	186
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			6	2	
Permitted Phases	•	4	6	· ·	-	2
Detector Phase	4	4	6	6	2	2
Switch Phase	т	т	U	U	2	2
Minimum Initial (s)	7.0	7.0	12.0	12.0	12.0	12.0
.,	22.5	22.5	23.0	23.0	23.0	23.0
Minimum Split (s)						
Total Split (s)	33.0	33.0	44.0	44.0	44.0	44.0
Total Split (%)	42.9%	42.9%	57.1%	57.1%	57.1%	57.1%
Maximum Green (s)	28.7	28.7	39.0	39.0	39.0	39.0
Yellow Time (s)	3.1	3.1	3.8	3.8	3.8	3.8
All-Red Time (s)	1.2	1.2	1.2	1.2	1.2	1.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.3	4.3		5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5	1.5	3.0	3.0	3.0	3.0
Recall Mode	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	8.0	8.0	8.0	8.0	8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0	0.0	0.0	0.0	0.0
Act Effct Green (s)	28.7	28.7	0	39.0	39.0	39.0
		0.37			0.51	0.51
Actuated g/C Ratio	0.37			0.51		
v/c Ratio	0.25	0.04		0.30	0.34	0.21
Control Delay	18.0	6.9		11.6	12.6	2.4
Queue Delay	0.0	0.0		0.0	0.0	0.0
Total Delay	18.0	6.9		11.6	12.6	2.4

US280 at Shades Crest 02/25/2019 2019 AM

	_#	7	5	×	×	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
LOS	В	А		В	В	А
Approach Delay	16.6			11.6	8.8	
Approach LOS	В			В	А	
Stops (vph)	100	6		253	165	16
Fuel Used(gal)	2	0		5	3	1
CO Emissions (g/hr)	109	10		333	224	50
NOx Emissions (g/hr)	21	2		65	44	10
VOC Emissions (g/hr)	25	2		77	52	12
Dilemma Vehicles (#)	0	0		30	19	0
Queue Length 50th (ft)	53	0		69	86	0
Queue Length 95th (ft)	96	14		100	139	29
Internal Link Dist (ft)	404			296	334	
Turn Bay Length (ft)		100				
Base Capacity (vph)	659	605		1702	943	893
Starvation Cap Reductn	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0
Reduced v/c Ratio	0.25	0.04		0.30	0.34	0.21
Intersection Summary						
Area Type:	Other					
Cycle Length: 77						
Actuated Cycle Length: 77	7					
Natural Cycle: 50						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.34						
Intersection Signal Delay:				In	tersection	LOS: B
Intersection Capacity Utiliz	zation 33.7%			IC	U Level o	of Service
Analysis Period (min) 15						

Splits and Phases: 2: Rocky Ridge Rd & Shades Crest Rd

	≯	-	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ب ا ا	1	<u>۲</u>	•	1	۲.	ef 👘	
Traffic Volume (vph)	18	12	5	224	6	354	6	707	405	222	292	13
Future Volume (vph)	18	12	5	224	6	354	6	707	405	222	292	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		200	75		200	0		0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.981				0.850			0.850		0.994	
Flt Protected		0.975			0.954		0.950			0.950		
Satd. Flow (prot)	0	1782	0	0	1777	1583	1770	1863	1583	1770	1852	0
Flt Permitted		0.629			0.725		0.526			0.085		
Satd. Flow (perm)	0	1149	0	0	1350	1583	980	1863	1583	158	1852	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9				265			412		4	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.54	0.54	0.54	0.74	0.74	0.74	0.84	0.84	0.84	0.76	0.76	0.76
Adj. Flow (vph)	33	22	9	303	8	478	7	842	482	292	384	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	64	0	0	311	478	7	842	482	292	401	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4		4	6		6	2		
Detector Phase	8	8		4	4	4	1	6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	15.0	15.0	7.0	15.0	
Minimum Split (s)	19.0	19.0		19.0	19.0	19.0	12.0	20.0	20.0	12.0	20.0	
Total Split (s)	26.0	26.0		26.0	26.0	26.0	12.0	50.0	50.0	14.0	52.0	
Total Split (%)	28.9%	28.9%		28.9%	28.9%	28.9%	13.3%	55.6%	55.6%	15.6%	57.8%	
Maximum Green (s)	22.0	22.0		22.0	22.0	22.0	8.0	45.0	45.0	10.0	47.0	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0	5.0	4.0	5.0	
Lead/Lag							Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	2.7	2.7		2.7	2.7	2.7	3.0	3.2	3.2	3.0	3.2	
Recall Mode	None	None		None	None	None	None	Min	Min	None	Min	
Walk Time (s)	4.0	4.0		4.0	4.0	4.0		4.0	4.0		4.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0		0	0		0	
Act Effct Green (s)		21.5			21.5	21.5	51.1	43.0	43.0	57.9	54.9	
Actuated g/C Ratio		0.25			0.25	0.25	0.58	0.49	0.49	0.66	0.63	
v/c Ratio		0.22			0.94	0.81	0.01	0.92	0.49	1.01	0.35	
Control Delay		26.5			71.3	26.6	5.3	37.8	4.3	81.0	9.5	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		26.5			71.3	26.6	5.3	37.8	4.3	81.0	9.5	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 AM LT Improved with Trip Gen

	۶	-	\mathbf{F}	4	-	*	1	Ť	۲	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		С			Е	С	А	D	А	F	А	
Approach Delay		26.5			44.2			25.5			39.6	
Approach LOS		С			D			С			D	
Stops (vph)		24			193	152	3	589	50	118	139	
Fuel Used(gal)		0			5	4	0	10	1	5	2	
CO Emissions (g/hr)		25			382	286	2	698	95	334	140	
NOx Emissions (g/hr)		5			74	56	0	136	19	65	27	
VOC Emissions (g/hr)		6			88	66	1	162	22	77	32	
Dilemma Vehicles (#)		0			11	0	0	0	0	0	0	
Queue Length 50th (ft)		25			174	116	1	417	20	~124	88	
Queue Length 95th (ft)		32			#240	149	5	#592	56	#206	153	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)						200	75		200			
Base Capacity (vph)		296			340	597	654	959	1015	288	1162	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.22			0.91	0.80	0.01	0.88	0.47	1.01	0.35	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 87	7.6											
Natural Cycle: 70												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 1.01												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	zation 79.7%			IC	U Level c	of Service	D					
Analysis Period (min) 15			-									
 Volume exceeds capa 			ally infinit	е.								
Queue shown is maxin												
# 95th percentile volume			eue may l	be longer	•							
Queue shown is maxin	num after two	cycles.										

Splits and Phases:	1: Rocky	Ridge Rd &	Dolly Ridge Rd

↑ Ø1	↓ Ø2	◆ Ø4
12 s	52 s	26 s
Ø5		↓ _{Ø8}
14 s	50 s	26 s

Lanes, Volumes, Timings
3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

	≯	+	•	4	+	*	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$		ľ	\$	
Traffic Volume (vph)	0	0	0	230	0	272	0	597	80	92	253	0
Future Volume (vph)	0	0	0	230	0	272	0	597	80	92	253	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	180		0
Storage Lanes	0		0	0		0	0		0	1		0
Taper Length (ft)	25			25			25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Frt					0.927			0.984			0.00	
Flt Protected					0.978			0.001		0.950	0.998	
Satd. Flow (prot)	0	1881	0	0	1705	0	0	1851	0	1698	1784	0
Flt Permitted	Ū	1001	Ŭ	Ŭ	0.853	Ű	Ŭ	1001	Ū	0.082	0.695	Ű
Satd. Flow (perm)	0	1881	0	0	1488	0	0	1851	0	147	1242	0
Right Turn on Red	U	1001	Yes	0	1400	Yes	U	1001	Yes	177	1272	Yes
Satd. Flow (RTOR)			163		73	163		10	163			103
Link Speed (mph)		15			35			35			35	
Link Distance (ft)		267			530			435			521	
Travel Time (s)		12.1			10.3			435			10.1	
Peak Hour Factor	0.00		0.00	0.86		0.00	0.75		0.75	0.07		0.07
	0.92	0.92	0.92		0.86	0.86	0.75	0.75	0.75	0.87	0.87	0.87
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	0	0	0	267	0	316	0	796	107	106	291	0
Shared Lane Traffic (%)	<u>,</u>	<u>,</u>	<u>,</u>	_		_	<u>,</u>		_	10%		
Lane Group Flow (vph)	0	0	0	0	583	0	0	903	0	95	302	0
Turn Type				Perm	NA			NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		1	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		12.0	12.0		5.0	12.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		22.5	22.5		12.0	22.5	
Total Split (s)	32.0	32.0		32.0	32.0		46.0	46.0		12.0	58.0	
Total Split (%)	35.6%	35.6%		35.6%	35.6%		51.1%	51.1%		13.3%	64.4%	
Maximum Green (s)	27.5	27.5		27.5	27.5		41.5	41.5		7.5	53.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0		0.0	0.0	
Total Lost Time (s)		4.5			4.5			4.5		4.5	4.5	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)					27.5			44.0		53.5	53.5	
Actuated g/C Ratio					0.31			0.49		0.59	0.59	
v/c Ratio					1.15			0.99		0.46	0.39	
Control Delay					117.8			53.7		16.9	10.7	
Queue Delay					0.0			0.0		0.0	0.0	
Total Delay					117.8			53.7		16.9	10.7	
LOS					F			55.7 D		10.9 B	B	
Approach Delay					г 117.8			53.7		D	ы 12.2	
					117.0			55.7			12.2	

Sicard Hollow Rd at Blue Lake Dr 02/27/2019 2019 AM Signalized

Lanes, Volumes, Timings
3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

	≯	-	\mathbf{F}	∢	+	*	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			D			В	
Stops (vph)					365			532		36	122	
Fuel Used(gal)					17			14		1	2	
CO Emissions (g/hr)					1165			945		61	173	
NOx Emissions (g/hr)					227			184		12	34	
VOC Emissions (g/hr)					270			219		14	40	
Dilemma Vehicles (#)					23			30		0	28	
Queue Length 50th (ft)					~365			~564		22	81	
Queue Length 95th (ft)					#529			#575		51	123	
Internal Link Dist (ft)		187			450			355			441	
Turn Bay Length (ft)										180		
Base Capacity (vph)					505			910		216	773	
Starvation Cap Reductn					0			0		0	0	
Spillback Cap Reductn					0			0		0	0	
Storage Cap Reductn					0			0		0	0	
Reduced v/c Ratio					1.15			0.99		0.44	0.39	
Intersection Summary												
	other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Natural Cycle: 140												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 1.15	_											
Intersection Signal Delay: 64.					tersectior		_					
Intersection Capacity Utilization 83.9% ICU Level of Service E												
Analysis Period (min) 15									_			
	 Volume exceeds capacity, queue is theoretically infinite. 											
Queue shown is maximum												
# 95th percentile volume ex			eue may l	be longer								
Queue shown is maximum	Queue shown is maximum after two cycles.											

Splits and Phases: 3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

Ø1	↑ Ø2	<u></u> 4
12 s	46 s	32 s
₽ _{Ø6}		₩ Ø8
58 s		32 s

Lane Configurations 4 7		٦	+	*	4	Ļ	•	•	1	1	1	ţ	~
Traffic Volume (vph) 18 12 5 224 6 354 6 707 405 222 292 13 Future Volume (vph) 18 12 5 224 6 354 6 707 405 222 292 13 Gleaf Flow (vphp) 1900 110	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 18 12 5 224 6 354 6 707 405 222 292 13 Future Volume (vph) 18 12 5 224 6 354 6 707 405 222 292 13 Gleaf Flow (vphp) 1900 110	Lane Configurations		44			.		ሻ	î.		ሻ	1.	
Future Volume (vph) 18 12 5 224 6 354 6 707 405 222 292 190 1900	•	18		5	224		354			405			13
Ideal Flow (vphp) 1900 100 100 100 100 100 100 100	· · · /												13
Storage Length (ft) 0 0 0 0 75 0 0 0 Storage Lenes 0 0 0 0 1 0 1 0 1 0 Storage Lenes 0 0 0 0 1.00	· · · /												1900
Storage Lanes 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <													0
Taper Length (ft) 25 26 25 25 Lane Uli. Factor 1.00 <td>č</td> <td></td> <td>0</td>	č												0
Lane Util. Factor 1.00 <td></td> <td></td> <td></td> <td>Ū</td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td>Ŭ</td> <td>-</td> <td></td> <td>Ŭ</td>				Ū			Ŭ			Ŭ	-		Ŭ
Frit 0.981 0.918 0.945 0.994 Fit Protected 0.975 0.981 0.950 0.950 Stdt. Flow (prot) 0 1782 0 0 1678 0 1760 0 1770 1852 0 Fit Permitted 0.672 0.852 0.524 0.056 0 1852 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Stdt. Flow (RTOR) 7 62 31 3 30 30 17avel Time (s) 7.7 7.8 5.3 6.2 Peak Hour Factor 0.54 0.54 0.74 0.74 0.84 0.84 0.84 0.76 0.76 Shared Lane Traffic (%) 7 7.8 5.3 6.2 2 2 2 2 364 17 3 2 2 9 30 8 478 7 842 482 2 92 401			1 00	1 00		1 00	1 00		1 00	1 00		1 00	1 00
Fit Protected 0.975 0.981 0.950 0.950 Satd. Flow (prot) 0 1782 0 0 1678 0 1770 1760 0 1770 1852 0 Fit Permitted 0.672 0.852 0.524 0.056 0 1760 0 104 1852 0 Right Turn on Red Yes Y		1.00		1.00				1.00		1.00			
Satd. Flow (prot) 0 1782 0 0 1678 0 1770 1760 0 1770 1852 0 Fit Permitted 0.672 0.852 0.524 0.056 0 1760 0 104 1852 0 Satd. Flow (perm) 0 128 0 0 1457 0 976 1760 0 104 1852 0 Right Tum on Red Yes								0 950	0.010		0 950	0.001	
Fit Permitted 0.672 0.852 0.524 0.056 Satd. Flow (perm) 0 128 0 0 1457 0 976 1760 0 104 1852 0 Right Turn on Red Yes		0		0	0		0		1760	0		1852	0
Satd. Flow (perm) 0 1228 0 0 1457 0 976 1760 0 104 1852 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 7 62 31 3 3 1 3 Link Speed (mph) 25 35 30 30 30 Link Distance (ft) 281 402 232 271 7 Travel Time (s) 7.7 7.8 5.3 6.2 9 Peak Hour Factor 0.54 0.54 0.74 0.74 0.74 0.84 0.84 0.84 0.76 0.76 0.76 Adj, Flow (vph) 3 22 9 303 8 478 7 842 482 292 304 11 Shared Lane Traffic (%) 1 1 6 5 2 9 9 7 1324 0 292 401<	, , , , , , , , , , , , , , , , , , ,	U		0	0		U		1100	U		1002	Ū
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 7 62 31 3 3 3 Link Speed (mph) 25 35 30 30 30 30 Link Distance (ft) 281 402 232 271 7 Travel Time (s) 7.7 7.8 5.3 6.2 7 Peak Hour Factor 0.54 0.54 0.74 0.74 0.84 0.84 0.84 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 173 Shared Lane Traffic (%) Lane Group Flow (vph) 0 64 0 0 789 0 7 1324 0 292 401 0 Turn Type Perm NA Perm NA pm+pt NA pm+pt NA 16 5 2 Stotch		0		0	0		0		1760	0		1852	0
Satd. Flow (RTOR) 7 62 31 3 Link Speed (mph) 25 35 30 30 Link Speed (mph) 25 35 30 30 Link Distance (ft) 281 402 232 271 Travel Time (s) 7.7 7.8 5.3 6.2 Peak Hour Factor 0.54 0.54 0.74 0.74 0.84 0.84 0.84 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 17 Shared Lane Traffic (%) Lane Group Flow (vph) 0 64 0 0 789 0 7 1324 0 292 401 0 Turn Type Perm <na< td=""> Perm<na< td=""> pm+pt NA pm+pt NA Protected Phases 8 4 4 1 6 5 2 Minimum Initial (s) 7.0 7.0 7.0 <td< td=""><td></td><td>U</td><td>1220</td><td></td><td>U</td><td>1457</td><td></td><td>310</td><td>1700</td><td></td><td>104</td><td>1052</td><td></td></td<></na<></na<>		U	1220		U	1457		310	1700		104	1052	
Link Speed (mph) 25 35 30 30 Link Distance (ft) 281 402 232 271 Travel Time (s) 7.7 7.8 5.3 6.2 Peak Hour Factor 0.54 0.54 0.74 0.74 0.84 0.84 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 173 Shared Lane Traffic (%) Lane Group Flow (vph) 0 64 0 0 789 0 7 1324 0 292 401 0 Tum Type Perm NA Perm NA pm+pt NA pm+pt NA Protected Phases 8 4 4 1 6 5 2 Detector Phase 8 8 4 4 1 6 5 2 Switch Phase			7	163		62	163		31	163		3	163
Link Distance (ft) 281 402 232 271 Travel Time (s) 7.7 7.8 5.3 6.2 Peak Hour Factor 0.54 0.54 0.74 0.74 0.74 0.84 0.84 0.76 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 17 Shared Lane Traffic (%) 989 0 7 1324 0 292 401 0 Shared Lane Traffic (%) 97 1324 0 292 401 0 Turn Type Perm NA Perm NA pm+pt NA pm+pt NA Protected Phases 8 4 4 1 6 5 2 2 2 2 2 2 2 2 2 2 2 2	· · · ·												
Travel Time (s) 7.7 7.8 5.3 6.2 Peak Hour Factor 0.54 0.54 0.74 0.74 0.74 0.84 0.84 0.84 0.76 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 17 Shared Lane Traffic (%) 9 0 7 1324 0 292 401 0 Tum Type Perm NA Perm NA pm+pt NA pm+pt NA Printed Phases 8 4 1 6 5 2													
Peak Hour Factor 0.54 0.54 0.74 0.74 0.74 0.84 0.84 0.76 0.76 0.76 Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 13 Shared Lane Traffic (%) 7 1324 0 292 401 0 Turn Type Perm NA Perm NA pm+pt NA pm+pt NA Perotected Phases 8 4 4 1 6 5 2 Detector Phase 8 8 4 4 1 6 5 2 Switch Phase 12.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 12.0 12.0 12.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 34.6% 9.2% <td>()</td> <td></td>	()												
Adj. Flow (vph) 33 22 9 303 8 478 7 842 482 292 384 113 Shared Lane Traffic (%)	()	0 5 4		0.54	0.74		0.74	0.04		0.04	0.76		0.76
Shared Lane Traffic (%) Lane Group Flow (vph) 0 64 0 0 789 0 7 1324 0 292 401 0 Turn Type Perm NA Perm NA pm+pt NA pm+pt NA Protected Phases 8 4 1 6 5 2 Detector Phase 8 8 4 1 6 5 2 Switch Phase 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Isitial (s) 7.0 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Split (s) 12.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s)													
Lane Group Flow (vph) 0 64 0 0 789 0 7 1324 0 292 401 0 Turn Type Perm NA Perm NA pm+pt NA pm+pt NA pm+pt NA pm+pt NA Protected Phases 8 4 4 1 6 5 2 2 Detector Phase 8 8 4 4 1 6 5 2 2 Switch Phase	, , ,	33	22	9	303	Ö	4/8	1	04Z	482	292	384	17
Turn Type Perm NA Perm NA pm+pt NA pm+pt NA Protected Phases 8 4 1 6 5 2 Detector Phase 8 8 4 4 1 6 5 2 Detector Phase 8 8 4 4 1 6 5 2 Switch Phase		0	04	0	•	700	•	7	4004	•	000	404	0
Protected Phases 8 4 1 6 5 2 Permitted Phases 8 4 6 2 2 Detector Phase 8 8 4 4 1 6 5 2 Switch Phase 8 8 4 4 1 6 5 2 Minimum Initial (s) 7.0 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Split (s) 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 4.0 1.0 1.0 1.0 Lead Lag Lead <t< td=""><td> ,</td><td></td><td></td><td>0</td><td></td><td></td><td>U</td><td></td><td></td><td>U</td><td></td><td></td><td>U</td></t<>	,			0			U			U			U
Permitted Phases 8 4 6 2 Detector Phase 8 8 4 4 1 6 5 2 Switch Phase		Perm			Perm								
Detector Phase 8 8 4 4 1 6 5 2 Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Initial (s) 7.0 7.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 4.0 All-Red Time (s) 1.0			8			4		•	6			2	
Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Split (s) 12.0 12.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead La			•						•			•	
Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 15.0 7.0 15.0 Minimum Split (s) 12.0 12.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (%) 34.6% 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 3.0 4.0 All-Red Time (s) 1.0		8	8		4	4		1	6		5	2	
Minimum Split (s) 12.0 12.0 12.0 12.0 20.0 12.0 20.0 Total Split (s) 45.0 45.0 45.0 45.0 12.0 69.0 16.0 73.0 Total Split (s) 34.6% 34.6% 34.6% 34.6% 9.2% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 4.0 3.0 4.0 All-Red Time (s) 1.0						= 0			15.0			45.0	
Total Split (s)45.045.045.045.045.012.069.016.073.0Total Split (%)34.6%34.6%34.6%34.6%9.2%53.1%12.3%56.2%Maximum Green (s)41.041.041.08.064.012.068.0Yellow Time (s)3.03.03.03.03.04.0All-Red Time (s)1.01.01.01.01.01.0Lost Time Adjust (s)0.00.00.00.00.00.0Total Lost Time (s)4.04.04.05.04.05.0Lead/LagLeadLagLeadLagLeadLagLead-Lag Optimize?YesYesYesYesYesVehicle Extension (s)2.72.72.72.73.03.23.03.2Recall ModeNoneNoneNoneNoneMinNoneMinAct Effct Green (s)41.041.041.072.064.081.077.8													
Total Split (%) 34.6% 34.6% 34.6% 34.6% 34.6% 34.6% 34.6% 53.1% 12.3% 56.2% Maximum Green (s) 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 3.0 4.0 All-Red Time (s) 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>													_
Maximum Green (s) 41.0 41.0 41.0 41.0 8.0 64.0 12.0 68.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 4.0 3.0 4.0 All-Red Time (s) 1.0 <td></td>													
Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 4.0 4.0 5.0 4.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Vehicle Extension (s) 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min None Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8													
All-Red Time (s) 1.0 <td>. ,</td> <td></td>	. ,												
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 4.0 4.0 5.0 4.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Vehicle Extension (s) 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min Mone Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8													
Total Lost Time (s) 4.0 4.0 4.0 4.0 5.0 4.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Vehicle Extension (s) 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min None Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8	.,	1.0			1.0								
Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min None Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8													
Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min None Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8			4.0			4.0							
Vehicle Extension (s) 2.7 2.7 2.7 2.7 3.0 3.2 3.0 3.2 Recall Mode None None None None Min None Min Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8													
Recall ModeNoneNoneNoneMinNoneMinAct Effct Green (s)41.041.072.064.081.077.8													
Act Effct Green (s) 41.0 41.0 72.0 64.0 81.0 77.8													
		None			None								
	,												
v	•		0.32			0.32		0.55			0.62	0.60	
v/c Ratio 0.16 1.57 0.01 1.50 1.34 0.36													
Control Delay 30.0 297.8 9.7 258.9 211.9 15.1	Control Delay												
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0	Queue Delay					0.0							
Total Delay 30.0 297.8 9.7 258.9 211.9 15.1	Total Delay		30.0			297.8		9.7	258.9		211.9	15.1	
LOS C F A F F B	LOS		С			F		А	F		F	В	
Approach Delay 30.0 297.8 257.6 98.0	Approach Delay		30.0			297.8			257.6			98.0	
Approach LOS C F F F			С			F			F			F	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 AM Improved with Trip Gen

	≯_	→ `	¥	∢	←	*	1	1	۲	5	Ļ	~
Lane Group	EBL E	BT E	BR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Stops (vph)		22			382		3	786		128	153	
Fuel Used(gal)	sed(gal) 0 40 0 65 11 2											
CO Emissions (g/hr)	Emissions (g/hr) 27 2794 3 4542 752 170											
NOx Emissions (g/hr)	missions (g/hr) 5 544 1 884 146 33											
DC Emissions (g/hr) 6 648 1 1053 174 39												
vilemma Vehicles (#) 0 14 0 0 0												
Queue Length 50th (ft)												
Queue Length 95th (ft)		40			#867		8	#1638		#347	216	
Internal Link Dist (ft)	2	201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)	3	392			501		596	882		218	1109	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn	0 0 0 0 0											
Storage Cap Reductn	0 0 0 0 0											
Reduced v/c Ratio												
Intersection Summary												
· · · / · ·	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Natural Cycle: 140												
Control Type: Actuated-Unco	pordinated											
Maximum v/c Ratio: 1.57												
Intersection Signal Delay: 225.1 Intersection LOS: F												
Intersection Capacity Utilization 124.3% ICU Level of Service H												
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maximur												
# 95th percentile volume e			may b	e longer								
Queue shown is maximum after two cycles.												

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

▲ Ø1	Ø2	€ Ø4
12 s	73 s	45 s
Ø5	√ ¶ø6	- ↓ ₂₈
16 s	69 s	45 s

Lanes, Volumes, Timings
1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	≯	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷		۲.	<u></u>	1	٦	<u></u>	1
Traffic Volume (vph)	65	88	13	113	166	108	28	460	115	199	894	295
Future Volume (vph)	65	88	13	113	166	108	28	460	115	199	894	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	115		0	140		350
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.989			0.962				0.850			0.850
Flt Protected		0.981			0.986		0.950			0.950		
Satd. Flow (prot)	0	1807	0	0	1767	0	1770	3539	1583	1770	3539	1583
Flt Permitted		0.662			0.831		0.950			0.314		
Satd. Flow (perm)	0	1220	0	0	1489	0	1770	3539	1583	585	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			25				142			304
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		493			298			271			469	
Travel Time (s)		11.2			6.8			4.1			7.1	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.92	0.81	0.81	0.81	0.97	0.97	0.97
Adj. Flow (vph)	74	100	15	123	180	117	35	568	142	205	922	304
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	189	0	0	420	0	35	568	142	205	922	304
Turn Type	Perm	NA	-	Perm	NA	-	Prot	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8	-		-		2	6	-	6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		5.0	18.0	18.0	5.0	18.0	18.0
Minimum Split (s)	23.0	23.0		23.0	23.0		12.0	23.5	23.5	12.0	23.5	23.5
Total Split (s)	40.0	40.0		40.0	40.0		12.0	32.0	32.0	18.0	38.0	38.0
Total Split (%)	44.4%	44.4%		44.4%	44.4%		13.3%	35.6%	35.6%	20.0%	42.2%	42.2%
Maximum Green (s)	34.0	34.0		34.0	34.0		6.0	26.5	26.5	12.0	32.5	32.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.0	4.0	4.0	3.0	4.0	4.0
All-Red Time (s)	2.5	2.5		2.5	2.5		3.0	1.5	1.5	3.0	1.5	1.5
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	5.5	5.5	6.0	5.5	5.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.5	3.5	2.0	3.5	3.5
Recall Mode	None	None		None	None		None	C-Min	C-Min	None	C-Min	C-Min
Walk Time (s)	7.0	7.0		7.0	7.0							
Flash Dont Walk (s)	10.0	10.0		10.0	10.0							
Pedestrian Calls (#/hr)	0	0		0	0							
Act Effct Green (s)	•	28.4		•	28.4		5.8	34.4	34.4	49.0	42.7	42.7
Actuated g/C Ratio		0.32			0.32		0.06	0.38	0.38	0.54	0.47	0.47
v/c Ratio		0.49			0.86		0.31	0.42	0.20	0.46	0.55	0.33
Control Delay		27.3			44.6		47.5	23.5	5.2	10.5	14.0	1.5
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.1	0.0
Total Delay		27.3			44.6		47.5	23.5	5.2	10.5	14.0	1.5
		21.5			-++.0		ч1.J	20.0	J.Z	10.5	14.0	1.0

Baseline

Lanes, Volumes, Timings
1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

	٦	-	$\mathbf{\hat{z}}$	4	←	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		С			D		D	С	А	В	В	A
Approach Delay		27.3			44.6			21.1			10.9	
Approach LOS		С			D			С			В	
Stops (vph)		124			332		28	336	16	59	554	29
Fuel Used(gal)		2			6		1	7	1	2	12	1
CO Emissions (g/hr)		157			436		47	502	37	123	850	94
NOx Emissions (g/hr)		31			85		9	98	7	24	165	18
VOC Emissions (g/hr)		36			101		11	116	8	29	197	22
Dilemma Vehicles (#)		0			0		0	26	0	0	42	0
Queue Length 50th (ft)		82			207		19	125	0	29	238	25
Queue Length 95th (ft)		130			305		45	171	31	68	165	2
Internal Link Dist (ft)		413			218			191			389	
Turn Bay Length (ft)							115			140		350
Base Capacity (vph)		464			578		120	1353	693	479	1680	911
Starvation Cap Reductn		0			0		0	0	0	0	72	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.41			0.73		0.29	0.42	0.20	0.43	0.57	0.33
Intersection Summary												
	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green, Master Intersection												
Natural Cycle: 60												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 19					tersectior		_					
Intersection Capacity Utilizat	ion 69.0%			IC	CU Level o	of Service	С					
Analysis Period (min) 15												

Splits and Phases: 1: Columbiana Rd & Shades Crest Rd/Vestaview Ln

Ø1	🖡 🕈 Ø2 (R)	<u>→</u> _{Ø4}
18 s	32 s	40 s
▲ ø5	Øer(R)	₩ Ø8
12 s	38 s	40 s

	1	•	ŧ	*	1	T
	▼.	-	I	/	-	•
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		<u></u>	1		<u></u>
Traffic Volume (vph)	291	114	537	96	78	1097
Future Volume (vph)	291	114	537	96	78	1097
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		160	150	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Frt	0.962			0.850		
Flt Protected	0.965				0.950	
Satd. Flow (prot)	1729	0	3539	1583	1770	3539
Flt Permitted	0.965				0.292	
Satd. Flow (perm)	1729	0	3539	1583	544	3539
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	26			120		
Link Speed (mph)	30		45	120		45
Link Distance (ft)	299		469			333
Travel Time (s)	6.8		7.1			5.0
Peak Hour Factor	0.89	0.89	0.80	0.80	0.94	0.94
	0.89	0.89 128	0.80 671	0.80	0.94	0.94 1167
Adj. Flow (vph)	321	128	0/1	120	83	1107
Shared Lane Traffic (%)	455	•	^74	400		4407
Lane Group Flow (vph)	455	0	671	120	83	1167
Turn Type	Prot		NA	Perm	pm+pt	NA
Protected Phases	8		2		1	6
Permitted Phases				2	6	
Detector Phase	8		2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0		18.0	18.0	5.0	18.0
Minimum Split (s)	22.5		22.5	22.5	12.0	22.5
Total Split (s)	41.0		37.0	37.0	12.0	49.0
Total Split (%)	45.6%		41.1%	41.1%	13.3%	54.4%
Maximum Green (s)	36.5		32.5	32.5	7.5	44.5
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5		4.5	4.5	4.5	4.5
()	4.5					4.5
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?	5.0		Yes	Yes	Yes	0.0
Vehicle Extension (s)	5.0		3.0	3.0	3.0	3.0
Recall Mode	None		C-Min	C-Min	None	C-Min
Walk Time (s)			7.0	7.0		7.0
Flash Dont Walk (s)			11.0	11.0		11.0
Pedestrian Calls (#/hr)			0	0		0
Act Effct Green (s)	29.5		42.0	42.0	51.5	51.5
Actuated g/C Ratio	0.33		0.47	0.47	0.57	0.57
v/c Ratio	0.78		0.41	0.15	0.20	0.58
Control Delay	35.0		10.9	0.9	11.7	14.8
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	35.0		10.9	0.9	11.7	14.8
i otal Dolay	00.0		10.0	0.0	11.7	14.0

Baseline

	4	•	1	*	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
LOS	С		В	А	В	В
Approach Delay	35.0		9.4			14.6
Approach LOS	С		А			В
Stops (vph)	332		172	2	37	684
Fuel Used(gal)	6		5	0	1	14
CO Emissions (g/hr)	396		347	23	57	991
NOx Emissions (g/hr)	77	68	5	11	193	
VOC Emissions (g/hr)	92		80	5	13	230
Dilemma Vehicles (#)	0		21	0	0	61
Queue Length 50th (ft)	215		80	1	20	212
Queue Length 95th (ft)	291		67	m2	48	323
Internal Link Dist (ft)	219		389			253
Turn Bay Length (ft)				160	150	
Base Capacity (vph)	716		1649	802	416	2025
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.64		0.41	0.15	0.20	0.58
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 0 (0%), Referenced	d to phase 2:N	NBT and 6	SBTL, S	Start of Gr	een	
Natural Cycle: 60						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.78						
Intersection Signal Delay:			ersection			
Intersection Capacity Utiliz	zation 60.9%			IC	U Level c	of Service
Analysis Period (min) 15						
m Volume for 95th perce	entile queue is	metered	by upstro	eam signa	ıl.	

Splits and Phases: 2: Columbiana Rd & Shades Crest Rd

	¥)	Ţ	×	*	×
Lana Group	SEL	SER	NEL	NET	SWT	SWR
Lane Group		SER T				SWR
Lane Configurations Traffic Volume (vph)	1 12	r 9	1 0	↑ 167	₽ 229	7
Future Volume (vph)	12	9	0	167	229	7
Ideal Flow (vphpl)	12	9 1900	1900	1900	1900	1900
Storage Length (ft)	1900	1900	300	1900	1900	1900
Storage Lanes	1	1	300 1			0
Taper Length (ft)	25	1	25			0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.996	1.00
Fit Protected	0.950	0.000			0.990	
	1787	1500	1001	1881	1874	Δ
Satd. Flow (prot)		1599	1881	1001	10/4	0
Fit Permitted	0.950	1500	1004	1004	1074	0
Satd. Flow (perm)	1787	1599	1881	1881	1874	0
Right Turn on Red		Yes			^	Yes
Satd. Flow (RTOR)		16			3	
Link Speed (mph)	25			35	35	
Link Distance (ft)	737			474	400	
Travel Time (s)	20.1			9.2	7.8	
Peak Hour Factor	0.58	0.58	0.77	0.77	0.95	0.95
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	21	16	0	217	241	7
Shared Lane Traffic (%)						
Lane Group Flow (vph)	21	16	0	217	248	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		5	2	6	
Permitted Phases		4	2	2		
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	10.0	10.0	6.0	12.0	12.0	
Minimum Split (s)	14.0	14.0	12.0	16.5	16.5	
Total Split (s)	20.0	20.0	12.0	60.0	48.0	
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	
Maximum Green (s)	16.0	16.0	8.0	55.5	43.5	
Yellow Time (s)	3.0	3.0	3.0	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
, , ,	4.0	4.0	4.0	0.0 4.5		
Total Lost Time (s)	4.0	4.0		4.5	4.5	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	4 5	4 5	Yes	0.0	Yes	
Vehicle Extension (s)	4.5	4.5	3.0	3.2	3.2	
Recall Mode	None	None	None	Min	Min	
Act Effct Green (s)	10.2	10.2		28.9	28.9	
Actuated g/C Ratio	0.29	0.29		0.82	0.82	
v/c Ratio	0.04	0.03		0.14	0.16	
Control Delay	11.0	6.7		3.5	3.6	
Queue Delay	0.0	0.0		0.0	0.0	
Total Delay	11.0	6.7		3.5	3.6	
LOS	D	А		А	А	
LUU	В	A		Л	Л	

2019 AM 02/06/2019 Baseline Sain Associates

	-	2	3	×	×	*			
Lane Group	SEL	SER	NEL	NET	SWT	SWR			
Approach LOS	А			А	А				
Stops (vph)	11	6		51	71				
Fuel Used(gal)	0	0		1	1				
CO Emissions (g/hr)	10	6		75	97				
NOx Emissions (g/hr)	2	1		15	19				
VOC Emissions (g/hr)	2	1		17	22				
Dilemma Vehicles (#)	0	0		13	18				
Queue Length 50th (ft)	2	0		0	0				
Queue Length 95th (ft)	8	4		37	51				
Internal Link Dist (ft)	657			394	320				
Turn Bay Length (ft)									
Base Capacity (vph)	826	748		1881	1857				
Starvation Cap Reductn	0	0		0	0				
Spillback Cap Reductn	0	0		0	0				
Storage Cap Reductn	0	0		0	0				
Reduced v/c Ratio	0.03	0.02		0.12	0.13				
Intersection Summary									
Area Type:	Other								
Cycle Length: 80									
Actuated Cycle Length: 35.	.3								
Natural Cycle: 45									
Control Type: Actuated-Un	coordinated								
Maximum v/c Ratio: 0.16									
Intersection Signal Delay: 4.0 Intersection LOS: A									
Intersection Capacity Utilization	ation 27.9%			IC	U Level o	of Service A			
Analysis Period (min) 15									

Splits and Phases: 1: Dolly Ridge Rd & Gresham Dr

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

Lane Configurations T		٦	+	7	4	+	*	1	1	1	1	ţ	~
Lane Configurations T	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 67 84 40 158 74 72 35 991 186 253 2073 33 Future Volume (vph) 67 84 40 158 74 72 35 991 186 253 2073 33 Future Volume (vph) 1900 110 100 100 100 100 100 100 100 100 110 127 0 1370 0 333 500 20 <td></td> <td>5</td> <td>1.</td> <td></td> <td>X</td> <td>1.</td> <td></td> <td><u>8</u></td> <td>**</td> <td>1</td> <td><u>8</u></td> <td>**</td> <td>1</td>		5	1.		X	1.		<u>8</u>	**	1	<u>8</u>	**	1
Future Volume (vph) 67 84 40 158 74 72 35 991 186 233 2073 33 Ideal Flow (vphpl) 1900				40			72						330
Ideal Flow (vphpl) 1900 <td>(,,,,</td> <td></td> <td>330</td>	(,,,,												330
Storage Length (ft) 250 0 250 0 300 175 0 33 Storage Lanes 1 0 1 0 1 0 1 0													1900
Storage Lanes 1 0 1 0 1 1 1 Taper Length (ft) 25 <td></td> <td>375</td>													375
Taper Length (ft) 25 25 25 25 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.950 0.850 0.850 FIt Protected 0.950 0.950 0.950 0.950 0.850 0.857 0.853 1583 1770 3539 1583 1770 3539 1583 348 3539 1583 1770 3539 1583 348 3539 1583 1770 3539 1583 348 3539 1583 1770 3539 1583 348 3539 151 170 173 0 811 1725 0 1770 3539 1583 348 3539 151 111 22 147 111 111 22 147 111 111 225 111 111 111 111 111 111 111 111 1111 111 111 111<													1
Lane Utili Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.85 0.85 FIt Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.87 0.87 0.82 0.853 3.36 3.539 151 160 1170 3.539 153 3.48 3.539 152 1170 1710 171 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.				Ŭ	25		Ŭ			•			•
Frit 0.952 0.926 0.850 0.850 0.850 FIt Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 9.950			1 00	1 00		1 00	1 00		0.95	1 00		0.95	1.00
Fit Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1773 0 1770 1725 0 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1531 1770 3539 1583 348 3539 1551 502 147 119 114 22 147 193 114 214 275 2253 33 5702 502				1.00				1.00	0.00		1.00	0.00	0.850
Satd. Flow (prot) 1770 1773 0 1770 1725 0 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 1770 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 348 3539 1583 3470 345 Link Distance (ft) 480 50 118 56 118 58 40		0 950	0.002		0 950	0.020		0 950		0.000	0 950		0.000
Fit Permitted 0.464 0.446 0.950 0.187 Satd. Flow (perm) 864 1773 0 831 1725 0 1770 3539 1583 348 3539 157 Right Turn on Red Yes			1773	0		1725	0		3539	1583		3539	1583
Satd. Flow (perm) 864 1773 0 831 1725 0 1770 3539 1583 348 3539 1563 Right Turn on Red Yes Yes <td< td=""><td></td><td></td><td>1110</td><td>Ű</td><td></td><td>1120</td><td>Ŭ</td><td></td><td>0000</td><td>1000</td><td></td><td>0000</td><td>1000</td></td<>			1110	Ű		1120	Ŭ		0000	1000		0000	1000
Right Tum on Red Yes			1773	0		1725	0		3539	1583		3539	1583
Satd. Flow (RTOR) 11 22 147 19 Link Speed (mph) 30 30 45 45 14 Link Distance (ft) 480 504 393 502 7 Travel Time (s) 10.9 11.5 6.0 7.6 7 Peak Hour Factor 0.71 0.71 0.71 0.88 0.88 0.87 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 33 Shared Lane Traffic (%) Lane Group Flow (vph) 94 174 0 180 166 0 40 1139 214 275 2253 33 Tum Type Perm NA Perm NA Perd NA Perd Perd NA Perd Pase 2 6 16 9 <td></td> <td>001</td> <td>1110</td> <td>-</td> <td>001</td> <td>1120</td> <td></td> <td>1110</td> <td>0000</td> <td></td> <td>010</td> <td>0000</td> <td>Yes</td>		001	1110	-	001	1120		1110	0000		010	0000	Yes
Link Speed (mph) 30 30 45 45 Link Distance (ft) 480 504 393 502 Travel Time (s) 10.9 11.5 6.0 7.6 Peak Hour Factor 0.71 0.78 0.88 0.88 0.87 0.87 0.92 0.92 0.32 Adj. Flow (vph) 94 118 56 180 84 82 40 1139 214 275 2253 33 Shared Lane Traffic (%) 30 1139 214 275 2253 33 Turn Type Perm NA Perm NA Perm NA Perm Pret exterd Phases 4 8 5 2 1 6 Detector Phase 4 4 8 8 5 2 2 1 6 Minimum Initial (s) 7.0 7.0 <	•		11	100		22	100						194
Link Distance (ft) 480 504 393 502 Travel Time (s) 10.9 11.5 6.0 7.6 Peak Hour Factor 0.71 0.71 0.71 0.88 0.88 0.87 0.87 0.92 0.92 0.92 Adj. Flow (vph) 94 118 56 180 84 82 40 1139 214 275 2253 33 Shared Lane Traffic (%) 166 0 40 1139 214 275 2253 33 Tum Type Perm NA Perm NA Prot NA Perm Perm Permited Phases 4 8 5 2 1 6 Detector Phase 4 4 8 8 5 2 1 6 Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 20.0 20.0 12.0 25.0 25.0 25.0 25.0	, ,								45			45	101
Travel Time (s) 10.9 11.5 6.0 7.6 Peak Hour Factor 0.71 0.71 0.71 0.87 0.87 0.87 0.92 0.92 0.92 Adj. Flow (vph) 94 118 56 180 84 82 40 1139 214 275 2253 33 Shared Lane Traffic (%) 2 174 0 180 166 0 40 1139 214 275 2253 33 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm Perm NA Perm NA Perm Perm Perm Perm NA Perm Perm Perm Perm NA Perm NA Perm Perm Perm Perm Perm Perm Perm Pare Perm Pare Perm Pare Pare Pare Pare Pare Pare Pare	,												
Peak Hour Factor 0.71 0.71 0.71 0.81 0.88 0.88 0.87 0.87 0.87 0.92 0.92 0.93 Adj. Flow (vph) 94 118 56 180 84 82 40 1139 214 275 2253 33 Shared Lane Traffic (%) 8 6 0 40 1139 214 275 2253 33 Jum Type Perm NA													
Adj. Flow (vph) 94 118 56 180 84 82 40 1139 214 275 2253 33 Shared Lane Traffic (%) 94 174 0 180 166 0 40 1139 214 275 2253 33 Turn Type Perm NA Perm Perm NA Perm <td></td> <td>0 71</td> <td></td> <td>0 71</td> <td>0.88</td> <td></td> <td>0.88</td> <td>0.87</td> <td></td> <td>0.87</td> <td>0 92</td> <td></td> <td>0.92</td>		0 71		0 71	0.88		0.88	0.87		0.87	0 92		0.92
Shared Lane Traffic (%) Lane Group Flow (vph) 94 174 0 180 166 0 40 1139 214 275 2253 33 Turn Type Perm NA Perm NA Prot NA Perm Protected Phases 4 8 5 2 1 6 Permitted Phases 4 4 8 8 5 2 1 6 Detector Phase 4 4 8 8 5 2 1 6 Switch Phase 4 4 8 8 5 2 2 1 6 Switch Phase 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0													359
Lane Group Flow (vph) 94 174 0 180 166 0 40 1139 214 275 2253 33 Turn Type Perm NA Perm NA Perm NA Perd NA Na Perd NA Na Perde Na Sitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		01	110	00	100	U1	02	10	1100	211	210	2200	000
Turn Type Perm NA Perm NA Prot NA Perm prive NA Perm NA Perdected Phases 4 8 5 2 1 6 Permitted Phases 4 4 8 5 2 2 1 6 Detector Phase 4 4 8 8 5 2 2 1 6 Switch Phase		94	174	0	180	166	0	40	1139	214	275	2253	359
Protected Phases 4 8 5 2 1 6 Permitted Phases 4 8 2 6 Detector Phase 4 4 8 5 2 2 1 6 Switch Phase				Ū			Ū						Perm
Permitted Phases 4 8 2 6 Detector Phase 4 4 8 8 5 2 2 1 6 Switch Phase		1 01111											
Detector Phase 4 4 8 8 5 2 2 1 6 Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0 21.0 25.0 10.0 10.0 10.0 10.0 10.0 25.0 1		4	•		8	Ŭ		Ū	-	2		Ŭ	6
Switch Phase Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0			4			8		5	2			6	6
Minimum Initial (s) 7.0 7.0 7.0 7.0 7.0 20.0 20.0 7.0 20.0					-	-		-				-	-
Minimum Split (s) 29.5 29.5 29.5 12.0 25.0 12.0 25.0 <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>20.0</td> <td>20.0</td> <td>7.0</td> <td>20.0</td> <td>20.0</td>		7.0	7.0		7.0	7.0		7.0	20.0	20.0	7.0	20.0	20.0
Total Split (s) 45.0 45.0 45.0 45.0 40.0 135.0 135.0 20.0 115.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0 116.0	.,												25.0
Total Split (%) 22.5% 22.5% 22.5% 20.0% 67.5% 67.5% 10.0% 57.5% 57.5% Maximum Green (s) 40.5 40.5 40.5 40.5 35.5 130.0 130.0 15.5 110.0 110 Yellow Time (s) 3.5 3.5 3.5 3.5 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0													115.0
Maximum Green (s) 40.5 40.5 40.5 35.5 130.0 130.0 15.5 110.0 110 Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 10.0 4.0 0.0													57.5%
Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 4.0 0.0	,												110.0
All-Red Time (s) 1.0 <td></td> <td>4.0</td>													4.0
Lost Time Adjust (s) 0.0	()												1.0
Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 5.0 5.0 4.5 5.0<	.,												0.0
Lead/Lag Lead Lag Lag <thlag< th=""> Lag Lag</thlag<>	, , ,												5.0
Lead-Lag Optimize? Yes	()												Lag
Vehicle Extension (s) 4.0												-	Yes
Recall Mode None None None None None C-Min C-Min <t< td=""><td>•</td><td>4.0</td><td>4.0</td><td></td><td>4.0</td><td>4.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0</td></t<>	•	4.0	4.0		4.0	4.0							4.0
Walk Time (s) 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 18.0 18.0 18.0 18.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 40.5 40.5 40.5 10.9 130.9 149.5 136.9 136.9	()												C-Min
Flash Dont Walk (s) 18.0 18.0 18.0 18.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 40.5 40.5 40.5 10.9 130.9 149.5 136.9 136.9												-	
Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 40.5 40.5 40.5 10.9 130.9 149.5 136.9 136													
Act Effct Green (s) 40.5 40.5 40.5 40.5 10.9 130.9 130.9 149.5 136.9 136	· · · · · · · · · · · · · · · · · · ·												
								10.9	130.9	130.9	149.5	136.9	136.9
	Actuated g/C Ratio	0.20	0.20		0.20	0.20		0.05	0.65	0.65	0.75	0.68	0.68
	.												0.31
													6.6
,													0.0
													6.6

US31 at Shades Crest Rd 02/25/2019 2019 PM Improved

Lanes, Volumes, Timings 1: US-31 & Shades Crest Rd

	≯	+	\mathbf{F}	∢	+	*	≺	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	F	E		F	E		F	В	А	С	D	A
Approach Delay		75.4			114.5			18.9			31.4	
Approach LOS		Е			F			В			С	
Stops (vph)	61	102		133	110		33	489	23	76	1685	61
Fuel Used(gal)	2	3		7	3		1	12	1	3	43	2
CO Emissions (g/hr)	121	197		455	218		86	864	66	207	3012	159
NOx Emissions (g/hr)	24	38		89	42		17	168	13	40	586	31
VOC Emissions (g/hr)	28	46		105	50		20	200	15	48	698	37
Dilemma Vehicles (#)	0	0		0	0		0	25	0	0	51	0
Queue Length 50th (ft)	112	192		~261	169		52	393	31	98	1345	78
Queue Length 95th (ft)	141	212		#427	248		95	423	62	148	#1592	140
Internal Link Dist (ft)		400			424			313			422	
Turn Bay Length (ft)	250			250			300		175			375
Base Capacity (vph)	174	367		168	366		314	2317	1087	370	2422	1144
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn 0												
Storage Cap Reductin 0												
Reduced v/c Ratio	0.54	0.47		1.07	0.45		0.13	0.49	0.20	0.74	0.93	0.31
Intersection Summary												
	Other											
Cycle Length: 200												
Actuated Cycle Length: 200												
Offset: 188 (94%), Reference	ed to phase	e 2:NBT a	ind 6:SBT	L, Start c	of Green							
Natural Cycle: 140												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 1.07												
Intersection Signal Delay: 36.1 Intersection LOS: D												
Intersection Capacity Utilization 94.2% ICU Level of Service F												
Analysis Period (min) 15												
 Volume exceeds capacit 			ally infinit	e.								
Queue shown is maximu												
# 95th percentile volume e			eue may l	be longer								
Queue shown is maximu	m after two	cycles.										

Splits and Phases: 1: US-31 & Shades Crest Rd

Ø1	Ø2 (R) 🕊	<u>⊿</u> _{Ø4}
20 s	135 s	45 s
▲ ø5	■ ↓ Ø6 (R)	₩ Ø8
40 s	115 s	45 s

Lanes, Volumes, Timings 1: Rocky Ridge Rd & US-280

	ሻ	1	ţ	Ļ	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations	ካካ	^		7	ኘካካ	1
Traffic Volume (vph)	309	2834	4637	668	324	265
Future Volume (vph)	309	2834	4637	668	324	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350	1900	1900	0	100	100
Storage Lanes	2			1	0	0
•	75			I	75	U
Taper Length (ft)	0.97	0.91	0.91	1.00	0.94	1.00
Lane Util. Factor Frt	0.97	0.91	0.91	0.850	0.94	0.850
	0.050			0.850	0.050	0.850
Flt Protected	0.950	5005	5005	4500	0.950	4500
Satd. Flow (prot)	3433	5085	5085	1583	4990	1583
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	3433	5085	5085	1583	4990	1583
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				180		205
Link Speed (mph)		55	55		40	
Link Distance (ft)		616	491		414	
Travel Time (s)		7.6	6.1		7.1	
Peak Hour Factor	0.98	0.98	0.93	0.93	0.80	0.80
Adj. Flow (vph)	315	2892	4986	718	405	331
Shared Lane Traffic (%)	0.0					
Lane Group Flow (vph)	315	2892	4986	718	405	331
Turn Type	Prot	NA	NA	Perm	Prot	Perm
Protected Phases	5	2	6		4	
Permitted Phases	J	2	0	6	4	4
Detector Phase	5	2	6	6	4	4
Switch Phase	5	2	U	U	4	4
	0.0	10.0	10.0	10.0	0.0	0.0
Minimum Initial (s)	8.0	12.0	12.0	12.0	8.0	8.0
Minimum Split (s)	12.5	24.5	24.5	24.5	22.5	22.5
Total Split (s)	40.0	200.0	160.0	160.0	40.0	40.0
Total Split (%)	16.7%	83.3%	66.7%	66.7%	16.7%	16.7%
Maximum Green (s)	35.5	193.5	153.5	153.5	35.5	35.5
Yellow Time (s)	3.5	5.5	5.5	5.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	6.5	6.5	6.5	4.5	4.5
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max	Max	Max	None	None
Walk Time (s)	NONG	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0	11.0
()						
Pedestrian Calls (#/hr)	00 5	0	0	0	0	0
Act Effct Green (s)	26.5	193.7	162.7	162.7	27.4	27.4
Actuated g/C Ratio	0.11	0.83	0.70	0.70	0.12	0.12
v/c Ratio	0.81	0.68	1.40	0.62	0.69	0.90
Control Delay	116.4	8.9	211.2	16.8	104.3	65.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.6
Total Delay	116.4	8.9	211.2	16.8	104.3	65.8

US280 at Shades Crest 02/25/2019 2019 AM

	ሻ	Ť	Ļ	¥	•	4
Lane Group	NBL	NBT	SBT	SBR	NEL	NER
LOS	F	А	F	В	F	E
Approach Delay		19.5	186.7		87.0	
Approach LOS		В	F		F	
Stops (vph)	298	1041	3338	275	306	107
Fuel Used(gal)	14	36	276	9	11	5
CO Emissions (g/hr)	983	2485	19280	662	755	371
NOx Emissions (g/hr)	191	483	3751	129	147	72
VOC Emissions (g/hr)	228	576	4468	153	175	86
Dilemma Vehicles (#)	0	61	22	0	0	0
Queue Length 50th (ft)	246	544	~3702	416	215	209
Queue Length 95th (ft)	311	703	#3894	667	227	262
Internal Link Dist (ft)		536	411		334	
Turn Bay Length (ft)	350				100	100
Base Capacity (vph)	525	4243	3564	1163	763	415
Starvation Cap Reductn	0	0	0	0	0	9
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.60	0.68	1.40	0.62	0.53	0.82
Intersection Summary	•					
Area Type:	Other					
Cycle Length: 240	A 4					
Actuated Cycle Length: 23	2.1					
Natural Cycle: 150						
Control Type: Actuated-Un	ncoordinated					
Maximum v/c Ratio: 1.40	400 F					
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	ation 118.0%	0		IC	U Level c	of Service H
Analysis Period (min) 15						
 Volume exceeds capacity 			cally infinit	e.		
Queue shown is maxim						
# 95th percentile volume			leue may	be longer		
Queue shown is maxim	um after two	cycles.				
Splits and Phases: 1: Ro	ocky Ridge R	d & US-2	280			

Lanes, Volumes, Timings 2: Rocky Ridge Rd & Shades Crest Rd

03/18/2019

	_#	7	3	*	¥	~
Lane Group	EBL	EBR	NEL	NET	SWT	SWR
Lane Configurations	<u> </u>	1		4 ۴	<u>+</u>	1
Traffic Volume (vph)	264	19	17	4 1 325	693	284
Future Volume (vph)	264	19	17	325	693	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	100	125	1000	1000	0
Storage Lanes	1	100	125			1
Taper Length (ft)	75	1	75			I
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00
Frt	1.00	0.850	0.95	0.95	1.00	0.850
	0.050	0.000		0.007		0.000
Flt Protected	0.950	1500	^	0.997	1000	1500
Satd. Flow (prot)	1770	1583	0	3529	1863	1583
Flt Permitted	0.950	4500	^	0.894	4000	4500
Satd. Flow (perm)	1770	1583	0	3164	1863	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		21				305
Link Speed (mph)	25			40	40	
Link Distance (ft)	484			376	414	
Travel Time (s)	13.2			6.4	7.1	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.93	0.93
Adj. Flow (vph)	293	21	20	374	745	305
Shared Lane Traffic (%)						
Lane Group Flow (vph)	293	21	0	394	745	305
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4	T OIIII	T OIIII	6	2	T OIIII
Permitted Phases	T	4	6	0	2	2
Detector Phase	4	4	6	6	2	2
	4	4	0	0	Z	Z
Switch Phase	7.0	7.0	40.0	40.0	40.0	40.0
Minimum Initial (s)	7.0	7.0	12.0	12.0	12.0	12.0
Minimum Split (s)	22.5	22.5	23.0	23.0	23.0	23.0
Total Split (s)	32.0	32.0	45.0	45.0	45.0	45.0
Total Split (%)	41.6%	41.6%	58.4%	58.4%	58.4%	58.4%
Maximum Green (s)	27.7	27.7	40.0	40.0	40.0	40.0
Yellow Time (s)	3.1	3.1	3.8	3.8	3.8	3.8
All-Red Time (s)	1.2	1.2	1.2	1.2	1.2	1.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.3	4.3		5.0	5.0	5.0
Lead/Lag				0.0	•.•	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	1.5	1.5	3.0	3.0	3.0	3.0
Recall Mode	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	8.0	8.0	8.0	8.0	8.0	8.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0
Act Effct Green (s)	27.7	27.7		40.0	40.0	40.0
Actuated g/C Ratio	0.36	0.36		0.52	0.52	0.52
v/c Ratio	0.46	0.04		0.24	0.77	0.32
Control Delay	21.8	7.4		10.6	21.6	2.2
Queue Delay	0.0	0.0		0.0	10.4	0.0
Total Delay	21.8	7.4		10.6	32.0	2.2

US280 at Shades Crest 02/25/2019 2019 AM

Lanes, Volumes, Timings 2: Rocky Ridge Rd & Shades Crest Rd

	_#	\mathbf{F}	3	*	*	~				
Lane Group	EBL	EBR	NEL	NET	SWT	SWR				
LOS	С	А		В	С	А				
Approach Delay	20.9			10.6	23.4					
Approach LOS	С			В	С					
Stops (vph)	196	6		176	536	21				
Fuel Used(gal)	3	0		3	10	1				
CO Emissions (g/hr)	211	9		234	717	79				
NOx Emissions (g/hr)	41	2		46	140	15				
VOC Emissions (g/hr)	49	2		54	166	18				
Dilemma Vehicles (#)	0	0		22	45	0				
Queue Length 50th (ft)	106	0		51	267	0				
Queue Length 95th (ft)	175	14		73	415	35				
Internal Link Dist (ft)	404			296	334					
Turn Bay Length (ft)		100								
Base Capacity (vph)	636	582		1643	967	968				
Starvation Cap Reductn	0	0		0	200	0				
Spillback Cap Reductn	0	0		0	0	0				
Storage Cap Reductn	0	0		0	0	0				
Reduced v/c Ratio	0.46	0.04		0.24	0.97	0.32				
Intersection Summary										
Area Type:	Other									
Cycle Length: 77										
Actuated Cycle Length: 77										
Natural Cycle: 60										
Control Type: Actuated-Ur	ncoordinated									
Maximum v/c Ratio: 0.77										
.	Intersection Signal Delay: 20.1					Intersection LOS: C				
Intersection Capacity Utiliz	ation 58.8%			IC	U Level o	of Service				
Analysia Dariad (min) 15										

Analysis Period (min) 15

Splits and Phases: 2: Rocky Ridge Rd & Shades Crest Rd

	≯	+	*	4	ł	*	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	1	•	1	1	ef 👘	
Traffic Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Future Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		200	75		200	0		0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850			0.850		0.993	
Flt Protected		0.972			0.956		0.950			0.950		
Satd. Flow (prot)	0	1765	0	0	1781	1583	1770	1863	1583	1770	1850	0
Flt Permitted		0.771			0.699		0.244			0.363		
Satd. Flow (perm)	0	1400	0	0	1302	1583	455	1863	1583	676	1850	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11				108			84		5	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.85	0.85	0.85	0.83	0.83	0.83	0.80	0.80	0.80	0.89	0.89	0.89
Adj. Flow (vph)	35	14	11	123	10	108	20	469	84	122	776	39
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	60	0	0	133	108	20	469	84	122	815	0
Turn Type	Perm	NA		Perm	NA	custom	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		8			4		<u> </u>	6		5	2	
Permitted Phases	8			4		8	6		6	2		
Detector Phase	8	8		4	4	8	1	6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	15.0	15.0	7.0	15.0	
Minimum Split (s)	22.0	22.0		22.0	22.0	22.0	12.0	23.0	23.0	12.0	23.0	
Total Split (s)	22.0	22.0		22.0	22.0	22.0	12.0	41.0	41.0	12.0	41.0	
Total Split (%)	29.3%	29.3%		29.3%	29.3%	29.3%	16.0%	54.7%	54.7%	16.0%	54.7%	
Maximum Green (s)	18.0	18.0		18.0	18.0	18.0	8.0	36.0	36.0	8.0	36.0	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0	5.0	4.0	5.0	
Lead/Lag							Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	2.7	2.7		2.7	2.7	2.7	3.0	3.2	3.2	3.0	3.2	
Recall Mode	None	None		None	None	None	None	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0		7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0		0	0		0	
Act Effct Green (s)	-	10.8		-	10.8	10.8	32.5	27.5	27.5	35.4	34.7	
Actuated g/C Ratio		0.21			0.21	0.21	0.63	0.53	0.53	0.68	0.67	
v/c Ratio		0.20			0.49	0.26	0.04	0.47	0.10	0.20	0.66	
Control Delay		18.9			27.8	7.2	4.3	13.8	3.2	4.8	13.4	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		18.9			27.8	7.2	4.3	13.8	3.2	4.8	13.4	
					20				J.L			

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 PM LT Improved

	٦	-	\mathbf{F}	•	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		В			С	А	А	В	А	А	В	
Approach Delay		18.9			18.5			11.9			12.3	
Approach LOS		В			В			В			В	
Stops (vph)		36			89	18	6	245	10	35	402	
Fuel Used(gal)		0			2	1	0	3	0	1	6	
CO Emissions (g/hr)		32			113	37	5	216	15	37	401	
NOx Emissions (g/hr)		6			22	7	1	42	3	7	78	
VOC Emissions (g/hr)		7			26	9	1	50	4	9	93	
Dilemma Vehicles (#)		0			7	0	0	0	0	0	0	
Queue Length 50th (ft)		12			36	0	2	106	0	11	132	
Queue Length 95th (ft)		44			92	30	8	185	16	34	#540	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)						200	75		200			
Base Capacity (vph)		523			480	652	507	1364	1181	640	1356	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.11			0.28	0.17	0.04	0.34	0.07	0.19	0.60	
Intersection Summary												
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 51.9	9											
Natural Cycle: 75												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 1					tersection							
Intersection Capacity Utiliza	ation 64.7%			IC	CU Level c	of Service	С					
Analysis Period (min) 15												
# 95th percentile volume e			eue may l	be longer								
Queue shown is maximu	im after two	cycles.										

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

Ø1	Ø2	₩ Ø4
12 s	41 s	22 s
Ø5	▲ ↑ Ø6	<u>≁</u> ₀₈
12 s	41 s	22 s

Lanes, Volumes, Timings
3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

	۶	-	\mathbf{F}	4	+	*	•	Ť	~	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			÷		1	el 🕴	
Traffic Volume (vph)	0	0	0	90	0	79	0	464	256	184	320	0
Future Volume (vph)	0	0	0	90	0	79	0	464	256	184	320	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	180		0
Storage Lanes	0		0	0		0	0		0	1		0
Taper Length (ft)	25		-	25		-	25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.937			0.952				
Flt Protected					0.974			0.002		0.950		
Satd. Flow (prot)	0	1881	0	0	1717	0	0	1791	0	1787	1881	0
Flt Permitted	0	1001	0	U	0.833	U	U	1701	0	0.181	1001	Ŭ
Satd. Flow (perm)	0	1881	0	0	1468	0	0	1791	0	340	1881	0
Right Turn on Red	U	1001	Yes	0	1400	Yes	U	1731	Yes	540	1001	Yes
Satd. Flow (RTOR)			165		77	165		48	165			165
		15			35			40 35			35	
Link Speed (mph)		267			530			435			521	
Link Distance (ft)												
Travel Time (s)	0.00	12.1	0.00	0.00	10.3	0.00	0.00	8.5	0.00	0.00	10.1	0.00
Peak Hour Factor	0.92	0.92	0.92	0.88	0.88	0.88	0.92	0.92	0.92	0.86	0.86	0.86
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	0	0	0	102	0	90	0	504	278	214	372	0
Shared Lane Traffic (%)		-		-					-			
Lane Group Flow (vph)	0	0	0	0	192	0	0	782	0	214	372	0
Turn Type				Perm	NA			NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		12.0	22.5	
Total Split (s)	22.6	22.6		22.6	22.6		48.4	48.4		14.0	62.4	
Total Split (%)	26.6%	26.6%		26.6%	26.6%		56.9%	56.9%		16.5%	73.4%	
Maximum Green (s)	18.1	18.1		18.1	18.1		43.9	43.9		9.5	57.9	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0		0.0	0.0	
Total Lost Time (s)		4.5			4.5			4.5		4.5	4.5	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)					11.6			45.5		58.1	58.1	
Actuated g/C Ratio					0.15			0.58		0.74	0.74	
v/c Ratio					0.68			0.74		0.54	0.27	
Control Delay					31.6			18.6		8.9	4.5	
Queue Delay					0.0			0.0		0.9	0.0	
Total Delay					31.6			18.6		8.9	4.5	
LOS					51.0 C			10.0 B		0.9 A		
										A	A 6 1	
Approach Delay					31.6			18.6			6.1	

Sicard Hollow Rd at Blue Lake Dr 02/27/2019 2019 PM Signalized

Lanes, Volumes, Timings
3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

	≯	-	\mathbf{r}	-	-	•	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					С			В			А	
Stops (vph)					94			485		53	97	
Fuel Used(gal)					2			9		1	2	
CO Emissions (g/hr)					171			603		99	156	
NOx Emissions (g/hr)					33			117		19	30	
VOC Emissions (g/hr)					40			140		23	36	
Dilemma Vehicles (#)					9			38		0	20	
Queue Length 50th (ft)					53			245		25	47	
Queue Length 95th (ft)					114			#549		57	99	
Internal Link Dist (ft)		187			450			355			441	
Turn Bay Length (ft)										180		
Base Capacity (vph)					397			1054		426	1388	
Starvation Cap Reductn					0			0		0	0	
Spillback Cap Reductn					0			0		0	0	
Storage Cap Reductn					0			0		0	0	
Reduced v/c Ratio					0.48			0.74		0.50	0.27	
Intersection Summary												
	her											
Cycle Length: 85												
Actuated Cycle Length: 78.7												
Natural Cycle: 75												
Control Type: Actuated-Uncoo	rdinated											
Maximum v/c Ratio: 0.74												
Intersection Signal Delay: 15.5					tersectior							
Intersection Capacity Utilizatio	n 77.9%			IC	U Level o	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume exc			eue may l	be longer								

Queue shown is maximum after two cycles.

Splits and Phases: 3: Blue Lake Rd/Cahaba Heights Rd & Driveway/Sicard Hollow Rd

Ø1		
14 s	48.4 s	22.6 s
Ø6		₹ Ø8
62.4s		22.6 s

	٦	+	\mathbf{F}	4	ł	*	•	1	1	×	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		<u>۲</u>	el 🕴		۲	¢Î,	
Traffic Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Future Volume (vph)	30	12	9	102	8	90	16	375	67	109	691	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25		•	25		•	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975			0.940			0.977			0.993	
Flt Protected		0.972			0.975		0.950	0.011		0.950	0.000	
Satd. Flow (prot)	0	1765	0	0	1707	0	1770	1820	0	1770	1850	0
Flt Permitted	U	0.769	0	0	0.808	U	0.207	1020	0	0.274	1000	Ū
Satd. Flow (perm)	0	1397	0	0	1415	0	386	1820	0	510	1850	0
Right Turn on Red	0	1007	Yes	0	1410	Yes	500	1020	Yes	010	1000	Yes
Satd. Flow (RTOR)		11	163		54	163		20	163		6	103
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.85	0.85	0.85	0.83	0.83	0.83	0.80	0.80	0.80	0.89	0.2	0.89
	0.65	0.05	0.05	123	0.65		0.80	469	0.00	122		
Adj. Flow (vph)	30	14	11	123	10	108	20	469	84	122	776	39
Shared Lane Traffic (%)	0	00	0	•	044	0	00	550	•	400	045	0
Lane Group Flow (vph)	0	60	0	0	241	0	20	553	0	122	815	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	0	8			4		1	6		5	2	
Permitted Phases	8	•		4			6	•		2	•	_
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase											1 = 0	_
Minimum Initial (s)	7.0	7.0		7.0	7.0		7.0	15.0		7.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		12.0	20.0		12.0	20.0	
Total Split (s)	15.0	15.0		15.0	15.0		12.0	38.0		12.0	38.0	
Total Split (%)	23.1%	23.1%		23.1%	23.1%		18.5%	58.5%		18.5%	58.5%	
Maximum Green (s)	11.0	11.0		11.0	11.0		8.0	33.0		8.0	33.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	5.0		4.0	5.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.0	3.2		3.0	3.2	
Recall Mode	None	None		None	None		None	Min		None	Min	
Act Effct Green (s)		10.5			10.5		29.7	23.3		32.6	30.2	
Actuated g/C Ratio		0.20			0.20		0.57	0.45		0.63	0.58	
v/c Ratio		0.21			0.73		0.05	0.67		0.24	0.75	
Control Delay		19.8			33.7		3.6	16.3		4.6	15.1	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		19.8			33.7		3.6	16.3		4.6	15.1	
LOS		В			С		A	В		A	В	
Approach Delay		19.8			33.7			15.9			13.8	
Approach LOS		В			С			В			В	
					-							

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 PM ST Improved

	≯	→	$\mathbf{\hat{v}}$	∢	←	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		37			121		6	311		33	451	
Fuel Used(gal)		0			3		0	4		1	6	
CO Emissions (g/hr)		33			200		5	279		36	437	
NOx Emissions (g/hr)		6			39		1	54		7	85	
VOC Emissions (g/hr)		8			46		1	65		8	101	
Dilemma Vehicles (#)		0			16		0	0		0	0	
Queue Length 50th (ft)		12			52		2	133		12	141	
Queue Length 95th (ft)		44			#165		6	186		24	#467	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		316			353		447	1209		521	1259	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.19			0.68		0.04	0.46		0.23	0.65	
Intersection Summary												
Area Type: O	other											
Cycle Length: 65												
Actuated Cycle Length: 51.9												
Natural Cycle: 65												
Control Type: Actuated-Uncod	ordinated											
Maximum v/c Ratio: 0.75												
Intersection Signal Delay: 17.	3			In	tersection	LOS: B						
Intersection Capacity Utilization	on 68.5%			IC	U Level c	of Service	С					
Analysis Period (min) 15												
# 95th percentile volume ex	ceeds capa	city, que	eue may l	be longer								
Queue shown is maximum	after two cy	/cles.		-								

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

▲ø1		₩ø4
12 s	38 s	15 s
Ø5	Ø	<u>↓</u> _{Ø8}
12 s	38 s	15 s

	4)	3	×	*	×
Lano Group	SEL	SER	NEL	NET	SWT	SWR
Lane Group						SWR
Lane Configurations Traffic Volume (vph)		r 298	ר 205	154	₽ 149	107
· · · · · ·	75 75	298 298	205 205	154 154	149	107
Future Volume (vph)		298 1900	205 1900	1900		1900
Ideal Flow (vphpl)	1900			1900	1900	
Storage Length (ft)	0	0	300			0
Storage Lanes	1	1	1			0
Taper Length (ft)	25		25		(
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.948	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1787	1599	1787	1881	1783	0
Flt Permitted	0.950		0.373			
Satd. Flow (perm)	1787	1599	702	1881	1783	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		608			34	
Link Speed (mph)	25			35	35	
Link Distance (ft)	737			474	400	
Travel Time (s)	20.1			9.2	7.8	
Peak Hour Factor	0.49	0.49	0.94	0.83	0.82	0.94
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	153	608	218	186	182	114
	100	000	210	100	102	114
Shared Lane Traffic (%)	450	600	040	100	2000	0
Lane Group Flow (vph)	153	608	218	186	296	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		1	6	2	
Permitted Phases		4	6			
Detector Phase	4	4	1	6	2	
Switch Phase						
Minimum Initial (s)	10.0	10.0	6.0	12.0	12.0	
Minimum Split (s)	14.0	14.0	12.0	16.5	16.5	
Total Split (s)	38.0	38.0	23.0	52.0	29.0	
Total Split (%)	42.2%	42.2%	25.6%	57.8%	32.2%	
Maximum Green (s)	34.0	34.0	19.0	47.5	24.5	
Yellow Time (s)	3.0	3.0	3.0	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.5	4.5	
Lead/Lag	4.0	4.0	Lead	ч.J	Lag	
Lead-Lag Optimize?			Yes		Yes	
	۶O	F 0		2.0		
Vehicle Extension (s)	5.0	5.0	3.0	3.2 Min	3.2	
Recall Mode	None	None	None	Min	Min	
Act Effct Green (s)	15.8	15.8	29.2	28.7	15.1	
Actuated g/C Ratio	0.30	0.30	0.55	0.54	0.28	
v/c Ratio	0.29	0.67	0.38	0.18	0.56	
Control Delay	16.9	6.1	9.3	7.9	20.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.9	6.1	9.3	7.9	20.5	
					-	
LOS	В	А	А	А	С	

2019 AM 02/06/2019 Baseline Sain Associates

Lanes, Volumes, Timings 1: Dolly Ridge Rd & Gresham Dr

	-	2	3	*	×	*
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Approach LOS	А			А	С	
Stops (vph)	50	31	93	69	177	
Fuel Used(gal)	1	2	2	1	3	
CO Emissions (g/hr)	64	165	125	90	220	
NOx Emissions (g/hr)	13	32	24	18	43	
VOC Emissions (g/hr)	15	38	29	21	51	
Dilemma Vehicles (#)	0	0	0	10	17	
Queue Length 50th (ft)	33	0	29	25	64	
Queue Length 95th (ft)	47	0	87	69	156	
Internal Link Dist (ft)	657			394	320	
Turn Bay Length (ft)			300			
Base Capacity (vph)	1193	1270	788	1669	876	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.48	0.28	0.11	0.34	
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 53	.4					
Natural Cycle: 45						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.67						
Intersection Signal Delay:					tersectior	
Intersection Capacity Utiliz	ation 44.5%			IC	U Level o	of Service A
Analysis Period (min) 15						
Splits and Phases: 1: Do	olly Ridge Rd	& Grach	am Dr			
		a Grean				

7 Ø1	¥ _{ø2}	₩ Ø4
23 s	29 s	38 s
¥ø6		
52 s		

	≯	-	\mathbf{F}	4	-	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्स	1	<u> </u>	†	1	<u>۲</u>	el A	
Traffic Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Future Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		200	75		200	0		0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.970				0.850			0.850		0.990	
Flt Protected		0.981			0.958		0.950			0.950		
Satd. Flow (prot)	0	1773	0	0	1785	1583	1770	1863	1583	1770	1844	0
Flt Permitted		0.790			0.759		0.325			0.369		
Satd. Flow (perm)	0	1427	0	0	1414	1583	605	1863	1583	687	1844	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20				263			156		7	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.76	0.76	0.76	0.88	0.88	0.88	0.88	0.88	0.88	0.77	0.77	0.77
Adj. Flow (vph)	34	36	20	251	34	263	16	357	156	297	649	45
Shared Lane Traffic (%)	-			-						-		
Lane Group Flow (vph)	0	90	0	0	285	263	16	357	156	297	694	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4			8		1	6		5	2	
Permitted Phases	4			8		8	6		6	2		
Detector Phase	4	4		8	8	8	1	6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	15.0	15.0	7.0	15.0	
Minimum Split (s)	19.0	19.0		19.0	19.0	19.0	12.0	20.0	20.0	12.0	20.0	
Total Split (s)	19.0	19.0		19.0	19.0	19.0	12.0	26.0	26.0	15.0	29.0	
Total Split (%)	31.7%	31.7%		31.7%	31.7%	31.7%	20.0%	43.3%	43.3%	25.0%	48.3%	
Maximum Green (s)	15.0	15.0		15.0	15.0	15.0	8.0	21.0	21.0	11.0	24.0	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0	5.0	4.0	5.0	
Lead/Lag							Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	2.7	2.7		2.7	2.7	2.7	3.0	3.2	3.2	3.0	3.2	
Recall Mode	None	None		None	None	None	None	Min	Min	None	Min	
Walk Time (s)	4.0	4.0		4.0	4.0	4.0		4.0	4.0		4.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0		0	0		0	
Act Effct Green (s)		13.8			13.8	13.8	25.5	17.5	17.5	32.5	29.5	
Actuated g/C Ratio		0.25			0.25	0.25	0.47	0.32	0.32	0.60	0.54	
v/c Ratio		0.24			0.79	0.44	0.04	0.60	0.25	0.49	0.69	
Control Delay		16.0			39.0	5.6	5.3	20.8	4.2	8.4	16.6	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		16.0			39.0	5.6	5.3	20.8	4.2	8.4	16.6	
					00.0	5.0	5.0	20.0		9.1		

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 School PM LT Improved

	٨	-	\mathbf{F}	•	←	•	1	Ť	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		В			D	А	А	С	А	А	В	
Approach Delay		16.0			23.0			15.4			14.1	
Approach LOS		В			С			В			В	
Stops (vph)		43			203	34	8	248	20	98	329	
Fuel Used(gal)		1			4	1	0	3	0	1	5	
CO Emissions (g/hr)		38			297	83	6	229	33	99	332	
NOx Emissions (g/hr)		7			58	16	1	44	6	19	65	
VOC Emissions (g/hr)		9			69	19	1	53	8	23	77	
Dilemma Vehicles (#)		0			19	0	0	0	0	0	0	
Queue Length 50th (ft)		18			85	0	2	101	0	42	137	
Queue Length 95th (ft)		42			#205	45	7	168	30	61	#293	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)						200	75		200			
Base Capacity (vph)		411			393	630	468	726	712	631	1002	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.22			0.73	0.42	0.03	0.49	0.22	0.47	0.69	
Intersection Summary												
	Other											
Cycle Length: 60												
Actuated Cycle Length: 54.4												
Natural Cycle: 60												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.79												
Intersection Signal Delay: 16.8 Intersection LOS: B												
Intersection Capacity Utilization 65.6% ICU Level of Service C												
Analysis Period (min) 15												
# 95th percentile volume e	exceeds cap	acity, que	eue may	be longer	•							
Queue shown is maximum after two cycles												

Queue shown is maximum after two cycles.

Splits and Phases: 1: Rocky Ridge Rd & Dolly Ridge Rd

Ø1	Ø2	<u>→</u> 04
12 s	29 s	19 s
Ø5	MØ6	● ▼ Ø8
15 s	26 s	19 s

	≯	-	\mathbf{F}	4	+	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	el el		۲ ۲	el el	
Traffic Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Future Volume (vph)	26	27	15	221	30	231	14	314	137	229	500	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	75		0	0		0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.970			0.935			0.954			0.990	
Flt Protected		0.981			0.978		0.950			0.950		
Satd. Flow (prot)	0	1773	0	0	1703	0	1770	1777	0	1770	1844	0
Flt Permitted		0.790			0.823		0.231			0.171		
Satd. Flow (perm)	0	1427	0	0	1433	0	430	1777	0	319	1844	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		18			58			27			5	
Link Speed (mph)		25			35			30			30	
Link Distance (ft)		281			402			232			271	
Travel Time (s)		7.7			7.8			5.3			6.2	
Peak Hour Factor	0.76	0.76	0.76	0.88	0.88	0.88	0.88	0.88	0.88	0.77	0.77	0.77
Adj. Flow (vph)	34	36	20	251	34	263	16	357	156	297	649	45
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	90	0	0	548	0	16	513	0	297	694	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		7.0	15.0		7.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		12.0	20.0		12.0	20.0	
Total Split (s)	37.0	37.0		37.0	37.0		12.0	36.0		17.0	41.0	
Total Split (%)	41.1%	41.1%		41.1%	41.1%		13.3%	40.0%		18.9%	45.6%	
Maximum Green (s)	33.0	33.0		33.0	33.0		8.0	31.0		13.0	36.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0			4.0		4.0	5.0		4.0	5.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.7	2.7		2.7	2.7		3.0	3.2		3.0	3.2	
Recall Mode	None	None		None	None		None	Min		None	Min	
Act Effct Green (s)		32.3			32.3		35.4	27.3		44.9	41.8	
Actuated g/C Ratio		0.38			0.38		0.42	0.32		0.53	0.49	
v/c Ratio		0.16			0.95		0.06	0.88		0.78	0.77	
Control Delay		16.6			52.3		10.5	43.5		29.6	25.9	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		16.6			52.3		10.5	43.5		29.6	25.9	
LOS		B			02.0 D		B	D		20.0 C	20.0 C	
Approach Delay		16.6			52.3		5	42.5		Ŭ	27.0	
Approach LOS		B			02.0 D			42.0 D			C	
		U			U						0	

Rocky Ridge Rd at Dolly Ridge Rd 03/04/2019 2019 School PM Improved with Trip Gen

	۶	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Stops (vph)		36			361		9	375		123	383	
Fuel Used(gal)		1			9		0	7		3	6	
CO Emissions (g/hr)		37			646		7	481		178	424	
NOx Emissions (g/hr)		7			126		1	94		35	82	
VOC Emissions (g/hr)		9			150		2	111		41	98	
Dilemma Vehicles (#)		0			24		0	0		0	0	
Queue Length 50th (ft)		27			277		4	250		87	276	
Queue Length 95th (ft)		49			#478		13	#401		128	405	
Internal Link Dist (ft)		201			322			152			191	
Turn Bay Length (ft)							75					
Base Capacity (vph)		567			594		310	668		391	918	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.16			0.92		0.05	0.77		0.76	0.76	
Intersection Summary												
· · /r ·	Other											
Cycle Length: 90												
Actuated Cycle Length: 85.3	}											
Natural Cycle: 90												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.95												
Intersection Signal Delay: 36				In	tersection	LOS: D						
Intersection Capacity Utilizat	tion 83.0%			IC	CU Level c	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
Splits and Phases: 1: Roc	ky Ridge R	d & Dolly	Ridge Ro	ł								

▲ Ø1	Ø2	₩ Ø4
12 s	41 s	37 s
Ø5	Interpretation of the second seco	<u></u> 28
17 s	36 s	37 s

Appendix C – Level of Service Description

Level of service criteria for signalized intersections is defined in terms of *delay*. Delay is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. Specifically, level-of-service criteria are stated in terms of the average stopped delay per vehicle for a 15-minute analysis period.

Level of service A describes operations with very low delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.

Level of service B describes operations with delay in the range of > 10 to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.

Level of service C describes operations with delay in the range of > 20 to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.

Level of service D describes operations with delay in the range of > 35 to 55 seconds per vehicle. At level D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high vehicle/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

Level of service E describes operations with delay in the range of > 55 to 80 seconds per vehicle. This is considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high vehicle/capacity ratios. Individual cycle failures are frequent occurrences.

Level of service F describes operations with delay in excess of 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with over saturation, i.e., when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

Level of service criteria for unsignalized intersections is stated in terms of average control delay. Control delay is defined as the total elapsed time from a vehicle joining the queue until its departure from the stopped position at the head of the queue. The criteria for each level of service are cited in the table below.

Level of Service	Average Control Delay (seconds/vehicle)
А	0 - 10
В	> 10 - 15
С	> 15 - 25
D	> 25 - 35
E	> 35 - 50
F	> 50

Levels of Service Daily Volume

The criteria for daily level of service are derived from ALDOT defined roadway capacities for urban 2-lane and 3-lane arterials and are cited in the table below.

Level of	Daily Service Volume				
Service	2-lane	3-lane			
А	6,500	8,200			
В	9,400	11,600			
С	11,600	14,400			
D	14,000	17,500			
E	18,700	23,300			
F	> 18,700	> 23,300			

Appendix D — Trip Generation Methodology

G SAIN ASSOCIATES

Trip Generation Methodology

The following information outlines the steps taken to perform trip generation analysis for the intersections of Dolly Ridge Road at Gresham:

- Collected count data at Dolly Ridge Road and Gresham Drive intersection on February 6, 2019. Received counts performed by Jefferson County at Rocky Ridge Road and Dolly Ridge Road intersection on January 15, 2019.
- Compiled ingress and egress traffic volumes from the 2013-2014 school year at Cahaba Heights Elementary.
- Compiled data from the Vestavia Hills City Schools website including the following:
 - Cahaba Heights Elementary School enrollment from 2014-2018
 - Dolly Ridge Elementary School estimated enrollment for 2019-2020
- Calculated average annual growth for Cahaba Heights Elementary School from 2014 through the estimated enrollment for 2019-2020 school year. Used the average annual growth rate for Cahaba Heights Elementary School to back-calculate an estimated enrollment for the 2013-2014 school year.
- Calculated a trip per student rate at Cahaba Heights Elementary for ingress and egress. Applied the trip per student rate from Cahaba Heights Elementary to the new Dolly Ridge Elementary School estimated enrollment for 2019-2020.
- Used the ITE Trip Generation Manual Land Use Code 210 to estimate the trips generated by the residential homes behind the new Dolly Ridge Elementary School.
- Cleared the Gresham Drive leg of all traffic volume and replaced it with volumes from the trip generation for Dolly Ridge Elementary and the residential homes.
- The following distributions were developed for school-related traffic at the intersection of Dolly Ridge Road and Gresham Drive:
 - AM Ingress (Gresham Drive northbound): 92% left turn from Dolly Ridge Road eastbound, 8% right turn from Dolly Ridge Road westbound (based on shortest path for population distribution zoned for Dolly Ridge Elementary)
 - AM Egress (Gresham Drive southbound): 67% right turn onto Dolly Ridge Road westbound, 33% left turn onto Dolly Ridge Road eastbound (estimate based on the assumption that a certain percentage will tripchain and commute downtown via the 280 corridor)
 - PM Ingress (Gresham Drive northbound): Inverse of the AM Egress.
 - PM Egress (Gresham Drive southbound): 80% right turn onto Dolly Ridge Road westbound, 20% left turn onto Dolly Ridge Road eastbound (based on the inverse of the AM Ingress with added cushion for trip-chaining to after school activities)

- Distributions for the residential trips generated can be found in Appendix D.
- Applied all generated trips to the appropriate distributions to calculate estimated turning movement volumes once the new Dolly Ridge Elementary opens for the 2019-2020 school year.

The following information outlines the steps taken to perform trip generation analysis for the intersection of Rocky Ridge Road at Dolly Ridge Road:

- Performed a shortest path analysis on the population zoned for Dolly Ridge Elementary to estimate the percentage of traffic arriving at the intersection from each direction. Applied estimated percentages to calculate an estimated amount of trips coming from each direction at the intersection.
- Removed the equivalent volume from the intersection based on the existing left turn volume from Dolly Ridge Road to Gresham Drive and the existing right turn volume from Gresham Drive to Dolly Ridge Road. Volumes were removed based on the distribution of existing traffic at the intersection from each direction.
- Added estimated amount of trips to each approach based on the current turning movement volume distributions for AM and PM ingress and egress.

Vestavia Hills, AL SA# 18-0337

Student Trip Rate Ingress Egress 0.94 0.75 per student enrolled 0.41 0.50 School AM PM

Trip Generation Estimate			PEAK H	OURS	ITE LUC Code
		Students	In	Out	
Dolly Ridge Elementary - AM Dropoff	735 students	735	688	550	None
Dolly Ridge Elementary - PM Pickup		735	302	368	None
		Weekday	In	Out	
Homes behind Gresham - AM	15 homes	15	3	11	210
Homes behind Gresham - School PM		16	10	5	210

Totals

Totals

Year	Total Vestavia Hills School District Enrollment	Cahaba Heights Elem. Enrollment	Growth	Percent Growth	Data Type		Ŭ	hts Elementary 13-14 School Ye	
2013-14	6701	357			Measured	Source: Annual Report		Ingress	Egress
2014-15	6760	379			Measured	Source: Annual Report	AM	334	267
2015-16	7014	401	22	5.80%	Measured	Source: Annual Report	PM	147	179
2016-17	7083	421	20	4.99%	Measured	Source: Annual Report			
2017-18	7192	466	45	10.69%	Measured	Source: Annual Report	Trip	s Per Student -	Rate
2018-19		469	3	0.64%	Projected	Source: VH Schools Website		Ingress	Egress
2019-20		491	22	4.69%	Projected	Source: VH Schools Website	AM	0.94	0.75
						_	PM	0.41	0.50
Annual Avg. Growth	1.8%			5.9%	Calculated	Used 5.9% to back-calculate CHE 2013-14 Er	rollment		

2014-15 to 2017-18 average annual growth at CH Elem.

	Total High School	Estimated	Measured			
Year	Enrollment	Freshmen	Seniors	Staff		
2013-14						Source: Annual Report
2014-15	1901	475				Source: Annual Report
2015-16	1970	493				Source: Annual Report
2016-17	2023	506				Source: Annual Report
2017-18	2012	503	509	243		Source: Annual Report
2018-19	2025	506			Projected	Source: VH Schools Website
2019-20	2058	515			Calculated	Calculated based on data above
2020-2021	2092	523			Calculated	Calculated based on data above

Avg. Annual Growth 1.6%

Peak Hour Intercept Trip Rates

Dolly Ridge Elementary

AM Peak PM Peak 0% 0% 0% 0%

Adjusted AM Peak Hour Trips	
Dolly Ridge Elementary Residential	

Adjusted PM Peak Hour Trips

Dolly Ridge Elementary Residential

	IN			OUT			
	Total		New	Total		New	
735 students	688		688	550		550	
15 homes	15		3	-		11	
-	-		-	-		-	
-	-		-	-		-	
	703		691	550		561	
-							
		IN			OUT		

		Total	New	Total	New
735	students	302	302	368	368
15	homes	16	10	16	5
-		0	0	0	0
-		0	0	0	0
		318	312	384	373

7.7% Calculated

-

Rocky Ridge Rd

-

Vestavia Hills, AL SA# 18-0337 School PM - Estimated Future Volumes

In 688 550

Out

New	ln	688
New	Out	550
Res	ln	3
Res	Out	11
Total	In	691
Total	Out	561

302 In 368

Out

New	In	302
New	Out	368
Res	ln	10
Res	Out	5
Total	In	312
Total	Out	373

Appendix E — Base Signal Timings

Controller: EPAC 300

Fault(s): Clock is not correct.

	Phase							
Base	1	2	3	4	5	6	7	8
Min green	7	15		7	7	15		7
Passage	2.7	3.2		2.7	2.7	3.2		2.7
Max Green	8	69		41	13	64		41
Yellow	3	4		3	3	4		3
Red	1	1		1	1	1		1
Min Recall		Min				Min		
Number Lock				Y				
Dual Entry				Y				Y

Density Timings								
Phase	1	2	3	4	5	6	7	8
AINI								
MAX INI								
TIM BEF								
ΤΙΜ ΤΟ								
MGAP								

Split: 0 / 0 / 1	Cycle Le	ngth: Free	Offse	et:	
Green:					

Split: AM /	/		Cycle Length:	130		Offset:	
Green:		12	73	45	16	69	45

Split: PM /	/		Cycle Le	ngth:	90		Offset:	
Green:		12	41		37	17	36	37

Split: / /	,	Cycle Le	ngth:		Offset:	
Green:						

Split: / /	1	Cycle Le	ength:		_			
Green:								

Time Of Day Plan									
SP	LIT	TIME							
Free		0:00							
AM		7:00							
Free		9:00							
PM		14:00							
Free		16:00							
		1							
		1							
├── ──		┥┟────┤							
		┨ ┠────┤							
		┥┝───┤							
		┨ ┠────┤							
		┨ ┠────┤							

Notes:	Jefferson County-owned signal. Reset clock. Detection is active.									
	oth left turn phase should be protected-permissive.									
	Use a Flashing Yellow Arrow configuration for both left turn conditions.									

Controller: EPAC 300

Notes:

Fault(s): Clock is not correct.

	Phase									
Base	1	2	3	4	5	6	7	8		
Min green	6	12		10		12				
Passage	3	3.2		5		3.2				
Max Green	48	24.5		34		47.5				
Yellow	3	3.5		3		3.5				
Red	1	1		1		1				
Min Recall		Min				Min				
Number Lock	Y			Y						
Dual Entry										

	Density Timings									
Phase	1	2	3	4	5	6	7	8		
AINI										
MAX INI										
TIM BEF										
ΤΙΜ ΤΟ										
MGAP										

Split: 0/0/1	Cycle Le	ngth: Free	Offset:	
Green:				

Split: AM /	/	Cycle Length:	100	Offset:	
Green:	52	25.5	22.5	77.5	

Split: PM /	1	Cycle Length:	90	Offset:	
Green:	23	29	38	52	

Split: / /	,	Cycle Le	ngth:		Offset:	
Green:						

Split: / /	1	Cycle Len	gth:		Offset:	
Green:						

Jefferson County-owned signal. Reset clock. Detection is active. Dolly Ridge Road eastbound left turn phase should be protected-permissive.

	ay Plan
SPLIT	TIME
Free	0:00
AM	7:00
Free	8:30
PM	14:00
Free	16:00

Appendix F — Signal Warrant Analysis Reports

		TF	RAFF	IC SI	GNA	LW	ARR/	ANTS	\$				
Citv	//Town: Vestavia	Hills			Anal	vsis Per	rformed	Bv [.]			DC		
	County: Jeffers					•	Perform	·		2/2	26/2019		
				Dre		-					80337		
				PIC	-		Applical						
Dat	a Date: 2/6/20	19			V	/eather	Conditio	ns:		Sh	owers		
-		ake Dri				ppr. Lar		C	Critical A	pproacl	h Speed	l (mph):	35
Minor	Route: Sicard I	Hollow F	Road		A	ppr. Lar	nes: <mark>1</mark>						
	e Level Criteria												1
1.	Is the critical speed of majo	or street	traffic >	70 km/ł	n (40 m	ph)?					Ye	s X	No
2.	Is the intersection in a built	-up area	or isola	ated con	nmunity	of <10,	000 pop	ulation?)		Ye	s <u>X</u>	No
lf Q	uestion 1 or 2 above is an	swered "	Yes", th	ien use	"70%" v	olume l	evel				700	% X	100%
WAR	RANT 1 - EIGHT-H		/EHIC			UME							
	rrant 1 is satisfied if Condition								Satisf	ied:	Ye:	s [y	No
	rrant is also satisfied if both Co						ed, given		outor	iou.			
ade	quate trials of other remedial i	neasures	have be	en tried.									
Ade	equate trial(s) of other re										Ye	s X	No
	<u>List Remedial M</u>	easures	Tried (F	Required	d for 809	% Comb	oination o	of A & E	<u>3)</u>		1		
											1		
	Condition A - Minimu	<u>m Vehi</u>	icular \	/olume	e & Co	ndition	B - Int	<u>errupti</u>	ion of (<u>Contin</u>	<u>uous T</u>	<u>raffic</u>	_
								100%	Satisfi	ed:	Ye	s X	No
		(Used	if neith	er Cond	lition A	or B is	satisfie	d) 80%	Satisfi	ed:	Ye	s X	No
1		1						Fic	ht Hial	nest Ho	urs		1
	(volumes in veh/hr)	Mini	mum Re	equirem	nents								
	Approach Lanes		1		more	MA V	PP &	S. C.W.	WP C	Wr o	the o	Morez .	2 CM
	Volume Level	100%	70%	100%	70%	<u>^`</u>	Þ.	Ś	ຕໍ	રું	ଁତ	er K	∿ `
A	Both Approaches	500	350	600	420	991	1,195	1,137	753	634	715	639	603
- 1A 0%	on Major Street			000	.20		.,	.,					
W - 100	Highest Approach on Minor Street	150	105	200	140	423	162	181	236	351	150	115	125
J	(volumes in veh/hr)	Mini	mum R	equiren	nents								
	Approach Lanes		1		more	MA	MA O	Moroz Noroz	44 LZ	Nor 2	AN S	Mor &	5 RM
	Volume Level	100%	70%	100%	70%	N	୍ର	22	23	₩	രി	Ø	Ś
B	Both Approaches on Major Street	750	525	900	630	991	1,195	1,137	753	634	715	639	603
W - 1B 100%	Highest Approach												
V F	on Minor Street	75	53	100	70	423	162	181	236	351	150	115	125
	(volumes in veh/hr)	Mini	mum R	equirem				4	4				
	Approach Lanes		1	2 or	more	MA	440	Alor OL	44	Nor 2	No.S.	Mor &	5 RM
	Volume Level	100%	70%	100%	70%		"	N	N	V	.,	~	••
4 V	Both Approaches on Major Street	400	280	480	336	991	1,195	1,137	753	634	715	639	603
W - 1A 80%	Highest Approach	120	84	160	112	423	162	181	236	351	150	115	125
	on Minor Street												
	(volumes in veh/hr)		mum Ro 1	equirem	nents more	4	4	N	A	4	4	4	
	Approach Lanes Volume Level	100%	70%	2 or 100%	more 70%	MA V	WA O	Mor Or	44	Nor 2	No.S.	WY X	5 RM
	Both Approaches	600	420	720	504	991	1,195	1,137	753	634	715	639	603
W - 1B 80%	on Major Street	000	420	120	504	391	1,195	1,137	755	034	/15	039	003
1.8	Highest Approach	60	42	80	56	423	162	181	236	351	150	115	125
2~	on Minor Street												

<u>NOTE:</u> The satisfaction of a warrant or warrants shall not in itself require the installation of a traffic control signal

NOTE: The satisfaction of a warrant or warrants shall not in itself require the installation of a traffic control signal

|--|

Satisfied:

Yes

X No

This warrant is intended for application where the fact that schoolchildren crossing the major route is the principal reason to consider installing a traffic control signal. For the purposes of this warrant, the word "schoolchildren" includes elementary through high school students. This warrant is satisfied if all three of the criteria below are fulfilled after remedial measures have been considered.

Any remedial measures implemented in or around the intersection to improve the safety of the students as noted in Section 4C.06 Warrant 5, School Crossing in the MUTCD:

	Criteria				Fulfi	lled?
	Criteria				Yes	No
1.	the hour this occurs. The hour can be any 60 minute interval (ex 2:15	Num. of Students	-	rossing Hour eriod		x
	<i>PM -</i> 3:15 <i>PM enter</i> 2:15 - 3:15). <i>Requires a minimum of</i> 20 schoolchildren durning the any hour.			-		Χ
2.	For both the morning (AM) and afternoon (PM) periods of operation, enter the number of adequate gaps observed for each period and the number of		Pe Minutes	eriod Gaps		
	minutes each period lasted. Requires one period to operate with fewer	AM	Minuted	Cupo		х
	gaps than the number of minutes in the period.	PM				
3.	Is the nearest traffic signal along the major route more than 90m (300 ft) from this crossing?	Yes	XNo		Y
	If the signal is within 90m (300 ft) of an existing signalize intersection, wi progressive movemen			No		^

WARRANT 6 - COORDINATED SIGNAL SYSTEM

Satisfied:

Yes

X No

Progressive movement in a coordinated signal system sometimes necessitates the installation of traffic control signals at intersections that would not otherwise be considered in order to maintain proper paltooning of vehicles. This warrant is satisfied if the below criteria is satified as follows: criteria 1 is satisfied and either criteria 2 or 3 is satisfied.

	Criteria	Fulf	illed?
	Ci toria	Yes	No
1.	The inclusion of this proposed signal, into the coordinated system, does not result in a signal spacing of less than 305m (1,000 ft)?		х
2	a. On a one-way street or a street that has traffic predominantly in one direction, are the adjacent traffic control signals so far apart that they do not provide the necessary degree of vehiclular platooning?	;	x
۷.	b. On a two-way street, do adjacent traffic control signals <u>not</u> provide the necessary degree of platooning and will the proposed and adjacent traffic control signals collectively provide a progressiv operation?	e	x

WARRANT 7 - CRASH EXPERIENCE

Satisfied:

Yes X No

This warrant is intended for application where the severity and frequency of crashes are the principal reasons to consider the installation of a traffic control signal. The need for a traffic control signal shall be considered if an engineering study finds that criteria 1, 2, and 3 are met.

Criteria			Fulfi Yes	lled? No
 Adequate trial of alternatives with satisfactory observance and enforcement has fialed to red frequency as shown below: 	uce the	crash		
				x
 How many crashes within the past 12 months? For this criteria to be met, five or more reported crashes, of types suseptible to correction by the installation of a traffic control signa must have occurred. 	I,			x
3. If Warrant 1A or Warrant 1B are 80 percent satisfied of the current values or if Warrant 4,	Me	et?		
4-hour or peak, is met at the 80 percent values.	Yes	No		
Warrant 1, Condition A, Minimum Vehicular Volume (80 percent satisfied):		Х		
Warrant 1, Condition B, Interruption of Continuous Traffic (80 percent satisfied):	X		х	
Warrant 4, Four-Hour Volume (80 percent satisfied):		Х	^	
Warrant 4, Peak Hour Volume (80 percent satisfied):		Х		

WARRANT 8 - ROADWAY NETWORK

Satisfied:

X No

Yes

This warrant is used to encourage the concentration and organization of traffic flow on a roadway network. This warrant is satisfied if one of the following 2 criteria is met and both routes meet at least on of the characteristics of a Major Route below.

		Criteria		Me Yes	et? No	Fulfi Yes	lled? No
1.	Both of the criteria to the right are	. Please enter the total existing, or immediately projected, entering traffic volume during the peak hour of a typical weekday. Requ a minumum of 1,000 vehicles to be met.	•		x		v
	required in order to be met.	 Based on an engineering study, does the 5 year projected traffic this location, meet one or more of Warrants 1, 2, or 3 during an weekday? * 			x		^
2.	Enter the total ex immediately proj volume for each	ed, entering any 5 hours of a		← Hou	r		Y
	non-normal busil or Sunday). 1,0 hour required.	s day. (Saturday) vph for each		← Volι	ime		~

* Supporting data required for verification of the projected 5 year traffic Warrants.

A major route, as used in this signal warrant, shall have at least one of t characteristics: Characteristics of Major Routes	he following	Me Yes	et? No	Fulfi Yes	lled? No
1. Is it a part of the street or highway system that serves as the principal	Major Route		NO Y	163	NO
			~		
roadway network for through traffic flow?	* Minor Route		X		
2. Does it include rural or suburban highways outside, entering, or traversing	Major Route		Х		v
a city?	* Minor Route		Х		^
3. Does it appear as a major route on an official plan, such as a major street	Major Route		Х		
plan in an urban area traffic and transportation study?	* Minor Route		Х		

* This is a minor route, but for the purposes of this Warrant, shall be considered as the other major route. <u>Note:</u> Supporting data shall be required to verify the routes meet one of the characteristics of a major route.

TRAFFIC	SIGNAL WAR		MARY		
City/Town: Vestavia Hills	Analysis	Performed By:		DC	
County: Jefferson		sis Performed:		2/26/2019	
Division: RPCGB Data Date: 2/6/2019		er if Applicable:		180337 Showers	
		-			
Major Route: Blue Lake Drive		Lanes: 1	Critical Appr	roach Speed (mph)): 35
Minor Route: Sicard Hollow Ro	ad Appr.	Lanes: 1			
Warrant #1: Eight-Hour Vehicular V	olume				SFIED
C C		0% Satisfied	100% Sa	tisfied	
1A - Minimum Vehicular Volume:		Yes X No	Yes	XNo	
1B - Interruption of Continuous Traffic:	X	Yes No	Yes	XNo	
Any Remedial Me	asures Tried and thei	r Outcome.			
<u>Warrant #2: Four-Hour Vehicular Ve</u>	<u>olume</u>			XYes	No
Warrant #3: Peak Hour				Yes	X No
The Unusual Case(s) t	hat Justifies the use o	f this Warrant.			
<u>Warrant #4: Pedestrian Volume</u>				Yes	XNo
Warrant #5: School Crossing				Yes	X No
Any Remedial Measures Implei	nented to improve th	e Safety of the	Students		
	incluted to improve the	e barety of the	otuuents.		
Warmant #C. Coordinated Signal Syst					
Warrant #6: Coordinated Signal Syst	em			Yes	XNo
Warrant #7: Crash Experience				Yes	X No
-	that have failed to red	luce crashes.			
Warrant #8: Roadway Network				Yes	XNo
Warrant #9: Intersection Near a Gra	de Crossing			Yes	X No
CONCLUSIONS	Warra	ants Satisfied	l: 2		
Remarks:					

			TF	RAFF	IC SI	GNA				5				
City	//Town:	Vestavia				-	lysis Per		_	•		DC		
	County:	Jefferson			-		nalysis I		-		2/	8/2019		
)ivision:	RPC			Dr		umber if a					80337		
						-								
Data	a Date:	2/6/20	119		_	V	/eather (ons:		Sn	owers		
Major	Route:		nbiana I			A	ppr. Lan	ies: 2	C	Critical A	pproach	n Speed	(mph):	<mark>45</mark>
Minor	Route:	Shade	es Crest	Rd		A	ppr. Lan	ies: <mark>1</mark>						
Volume	e Level Crit	eria												_
1. I	Is the critical	I speed of majo	or street	traffic >	• 70 km/ł	h (40 m	ph) ?					X Yes	S	No
2. I	Is the interse	ection in a built	-up area	ı or isola	ated con	nmunity	of <10,0	000 pop	ulation?	•		Yes	6	No
lf Q	uestion 1 or	2 above is an	swered "	'Yes", th	nen use	"70%" v	volume le	evel				X 70%	%	100%
WAR	RANI 1	- EIGHT-H	JUR V	/EHIC	ULA									_
War	rrant 1 is satis	fied if Condition	A or Con	dition B i	is "100%"	" satisfie	d.			Satisf	ied:	X Yes	S	No
		atisfied if both Co				are "809	%" satisfie	ed, given						
		f other remedial ı												
Ade	-	(s) of other re										Yes	s X	No
	<u>LI.</u>	ist Remedial M	easures	I ried (H	Required	d for 80	% Comb	ination o	of A & B	<u>3)</u>		1		
	Conditio	n A - Minimu	m Vehi	icular \	Volume	e & Co	ndition	B - Int	errupti	ion of (Contin	uous T	raffic	
	<u>Conditio</u>	<u>n A - Minimu</u>	<u>m Vehi</u>	icular \	Volume	e & Co	ndition	B - Int		i <mark>on of (</mark> Satisfi		uous T X Yes		No
	<u>Conditio</u>	<u>n A - Minimu</u>							100%	Satisfi	ed:	X Yes		
	Conditio	n A - Minimu					ndition or B is		100% d) 80%	Satisfie	ed: ed:	X Yes		No No
			(Used i	<mark>if neith</mark>	<mark>er Cond</mark>	lition A			100% d) 80%	Satisfie Satisfie ght High	ed: ed:	X Yes		
	(volume	s in veh/hr)	(Used i	<mark>if neith</mark>	er Cond	lition A	or B is	satisfie	100% d) 80% Eig	Satisfie Satisfie ght High	ed: ed: nest Ho	X Yes Yes urs	6	No
	(volume Approa		(Used i	<mark>if neithe</mark> mum Re	er Cond	lition A nents more			100% d) 80%	Satisfie	ed: ed:	X Yes		No
	(volume Approa Volur	s in veh/hr) ach Lanes	(Used i Minir 100%	<mark>if neithe</mark> mum Re 1 70%	er Cond equirem 2 or 100%	lition A nents more 70%	or B is	satisfie	100% d) 80% Eiç	Satisfie Satisfie tht High	ed: ed: nest Ho		a and a second s	No No
-1A 0%	(volume Approa Volur Both A on Ma	s in veh/hr) ach Lanes ne Level pproaches ajor Street	(Used i Minir	<mark>if neithe</mark> mum Re	er Cond equirem	lition A nents more	or B is	satisfie	100% d) 80% Eig	Satisfie Satisfie ght High	ed: ed: nest Ho	X Yes Yes urs	6	No
W - 1A 100%	(volume Approa Volur Both A on Ma Highest	s in veh/hr) ach Lanes ne Level pproaches ajor Street Approach	(Used i Minir 100%	<mark>if neithe</mark> mum Re 1 70%	er Cond equirem 2 or 100%	lition A nents more 70%	or B is	satisfie	100% d) 80% Eiç	Satisfie Satisfie tht High	ed: ed: nest Ho	X Yes Yes urs 1,183	5 5 1,074	No 7 995
W - 1A 100%	(volume Approa Volur Both Aj on Ma Highest on Mir	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street	(Used i Minin 100% 500 150	if neith mum R 1 70% 350 105	er Cond equirem 2 or 100% 600 200	lition A nents more 70% 420 140	or B is a	satisfie	100% a) 80% Eig & 1,557 422	Satisfie Satisfie ght High % 1,508 123	ed: ed: nest Ho , , , , , , , , , , , , , , , , , , ,	X Yes Yes urs 1,183 125	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No 2995 200
W - 1A 100%	(volume Approa Volur Both Aj on Ma Highest on Mir (volume	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr)	(Used i Minin 100% 500 150 Minin	if neith mum R 1 70% 350 105	er Cond equirem 2 or 100% 600 200 equirem	hents more 70% 420 140 ments	or B is a	satisfie	100% a) 80% Eig & 1,557 422	Satisfie Satisfie ght High % 1,508 123	ed: ed: nest Ho , , , , , , , , , , , , , , , , , , ,	X Yes Yes urs 1,183 125	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No 2995 200
W - 1A 100%	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street	(Used i Minin 100% 500 150 Minin	if neith mum Ro 1 70% 350 105 mum Ro	er Cond equirem 2 or 100% 600 200 equirem	lition A nents more 70% 420 140	or B is 2	satisfie	100% ed) 80% Eig g ^w 1,557	Satisfie Satisfie Tht High	ed: ed: nest Ho S ^M 1,157	X Yes Yes urs 1,183	5 5 1,074	No 2995 200
- M 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level pproaches	(Used i Minin 100% 500 150 Minin 100%	if neither mum Re 1 70% 350 105 mum Re 1 70%	er Cond equirem 2 or 100% 600 200 equirem 2 or 100%	lition A nents more 70% 420 140 nents more 70%	or B is 1 4 1,806 405	satisfie ,	100% d) 80% Eig d 1,557 422	Satisfie Sat	ed: ed: nest Ho 2,0 ¹¹ 1,157 289	X Yes Yes urs 1,183 125	5 5 1,074 223	No 47 995 200
- M 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level pproaches ajor Street	(Used i Minin 100% 500 150 Minin	if neithe mum Re 1 70% 350 105 mum Re 1	er Cond equirem 2 or 100% 600 200 equirem 2 or	lition A nents more 70% 420 140 nents more	or B is a	satisfie	100% a) 80% Eig & 1,557 422	Satisfie Satisfie ght High % 1,508 123	ed: ed: nest Ho , , , , , , , , , , , , , , , , , , ,	X Yes Yes urs 1,183 125	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No 47 995 200
W - 1B W - 1A 100% 100%	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approach	(Used i Minin 100% 500 150 Minin 100%	if neither mum Re 1 70% 350 105 mum Re 1 70%	er Cond equirem 2 or 100% 600 200 equirem 2 or 100%	lition A nents more 70% 420 140 nents more 70%	or B is 1 4 1,806 405	satisfie ,	100% d) 80% Eig d 1,557 422	Satisfie Sat	ed: ed: nest Ho 2,0 ¹¹ 1,157 289	X Yes Yes urs 1,183 125	5 5 1,074 223	No 995 200 995 995
- M 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Mir	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s approach	(Used i Minin 100% 500 150 150 150 750 750	if neither mum Re 70% 350 105 mum Re 1 70% 525 53	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100	lition A nents more 70% 420 140 140 nents more 70% 630 70	or B is 1 405 1,806 405 1,806 405	satisfie	100% d) 80% Eig d 1,557 422 1,557 422 422	Satisfie Satisfie Satisfie Dit High 1,508 123 1,508 1,508 123	ed: ed: nest Ho 2,3 1,157 289 1,157 289	X Yes Yes Urs 1,183 125 1,183 1,183 1,183	223 1,074 223 1,074 223	No 995 200 995 200 200
- M 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes	(Used i Minin 100% 500 150 150 150 750 750 75 Minin	if neither mum Re 1 70% 350 105 mum Re 525 53 mum Re 1	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or	lition A nents more 70% 420 140 140 nents more 70% 630 70 nents more	or B is 1 405 1,806 405 1,806 405	satisfie	100% d) 80% Eig d 1,557 422 1,557 422 422	Satisfie Satisfie Satisfie Dit High 1,508 123 1,508 1,508 123	ed: ed: nest Ho 2,3 1,157 289 1,157 289	X Yes Yes Urs 1,183 125 1,183 1,183 1,183	223 1,074 223 1,074 223	No 995 200 995 200
- M 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approach nor Street s in veh/hr) ach Lanes me Level	(Used i Minin 100% 500 150 150 150 750 750 75 Minin	if neithe mum Re 1 70% 350 105 mum Re 525 53 mum Re	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem	lition A nents more 70% 420 140 140 nents more 70% 630 70	or B is 1 405 1,806 405 1,806	satisfie ,	100% d) 80% Eig d 1,557 422 d d t,557 1,557	Satisfie Satisfie Satisfie Dht High 1,508 123 1,508	ed: ed: nest Ho 2,3 1,157 289 1,157	X Yes Yes Urs 1,183 125 , , , , , , , , , , , , , , , , , , ,	223 1,074 223 1,074	No 995 200 995 200 200
W - 1B W - 100% 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj	s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches me Level pproaches	(Used i Minin 100% 500 150 150 150 750 750 75 Minin	if neither mum Re 70% 350 105 mum Re 525 53 mum Re 1 70%	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100%	lition A nents more 70% 420 140 nents more 70% 630 70 nents more 70%	or B is 1 405 1,806 405 1,806 405	satisfie	100% d) 80% Eig d, d 1,557 422 1,557 422 422 d, d 422	Satisfie Satisfie Satisfie The High Satisfie Sat	ed: ed: nest Ho 2,89 1,157 289 1,157 289	X Yes Yes Urs 1,183 125 1,183 125 1,183	1,074 223 1,074 223 1,074 223	No 995 200 995 200 200
W - 1B W - 100% 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma	s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes mor Street s in veh/hr) ach Lanes me Level pproaches ajor Street	(Used i Minin 100% 500 150 150 150 750 750 75 Minin	if neither mum Re 1 70% 350 105 mum Re 525 53 mum Re 1	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or	lition A nents more 70% 420 140 140 nents more 70% 630 70 nents more	or B is 1 405 1,806 405 1,806 405	satisfie	100% d) 80% Eig d 1,557 422 1,557 422 422	Satisfie Satisfie Satisfie Dit High 1,508 123 1,508 1,508 123	ed: ed: nest Ho 2,3 1,157 289 1,157 289	X Yes Yes Urs 1,183 125 1,183 1,183 1,183	223 1,074 223 1,074 223	No 995 200 995 200 200
- M 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest	s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street Approaches ajor Street	(Used i Minin 100% 500 150 150 150 750 750 75 Minin	if neither mum Re 70% 350 105 mum Re 525 53 mum Re 1 70%	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100%	lition A nents more 70% 420 140 nents more 70% 630 70 nents more 70%	or B is 1 405 1,806 405 1,806 405	satisfie	100% d) 80% Eig d, d 1,557 422 1,557 422 422 d, d 422	Satisfie Satisfie Satisfie The High Satisfie Sat	ed: ed: nest Ho 2,89 1,157 289 1,157 289	X Yes Yes Urs 1,183 125 1,183 125 1,183	1,074 223 1,074 223 1,074 223	No 995 200 995 200 995 200 4 995
W - 1B W - 100% 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Ma Highest on Mir	s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes mor Street s in veh/hr) ach Lanes me Level pproaches ajor Street	(Used i Minin 100% 500 150 150 750 750 750 750 750 750 750 750 750 7	if neithe mum Re 1 70% 350 105 mum Re 525 53 53 mum Re 1 70% 280 84	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480	lition A ments more 70% 420 140 140 140 0 0 0 0 0 0 0 0 0 0 0 0 0	or B is 1 405 1,806 405 1,806 405 1,806 405	satisfie ,	100% d) 80% Eig d, d 1,557 422 1,557 422 1,557 422 1,557 422	Satisfie Satisfie Satisfie (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508)	ed: ed: action est Ho 289 1,157 289 1,157 289 1,157 289	X Yes Yes Irs 1,183 125 1,183 125 1,183 125	I I I	No 995 200 995 200 995 200 995 200
W - 1B W - 100% 100	(volume Approa Volur Both A on Ma Highest on Mir (volume Approa Volur Both A on Ma Highest on Ma Highest on Ma Highest on Mir (volume Approa	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes	(Used i Minin 100% 500 150 150 150 750 750 750 750 750 750 750 750 750 7	if neitho mum Ra 1 70% 350 105 mum Ra 525 53 53 53 mum Ra 1 70% 280 84 84 mum Ra	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480 160 equirem 2 or	lition A ments more 70% 420 140 140 140 0 0 0 0 0 0 0 0 0 0 0 0 0	or B is 1 405 1,806 405 1,806 405 1,806 405	satisfie ,	100% d) 80% Eig d, d 1,557 422 1,557 422 1,557 422 1,557 422	Satisfie Satisfie Satisfie (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508)	ed: ed: action est Ho 289 1,157 289 1,157 289 1,157 289	X Yes Yes Irs 1,183 125 1,183 125 1,183 125	I I I	No 995 200 995 200 995 200 995 200
W - 1B W - 100% 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level s in veh/hr) ach Lanes me Level s in veh/hr) ach Lanes me Level	(Used i Minin 100% 500 150 150 750 750 750 750 750 750 750 750 750 7	if neithe mum Ra 1 70% 350 105 mum Ra 525 53 53 mum Ra 1 70% 280 84	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480 160 equirem	lition A ments more 70% 420 140 140 140 0 0 0 0 0 0 0 0 0 0 0 0 0	or B is 1	satisfie	100% d) 80% Eig d, d 1,557 422 1,557 422 1,557 422 1,557	Satisfie Satisfie Satisfie Dht High 1,508 1,508 1,508 1,508	ed: ed: nest Ho 2,89 1,157 289 1,157 289 1,157	X Yes Yes Urs 1,183 125 1,183 125 1,183 125 1,183	1,074 223 1,074 223 1,074 223 1,074	No 995 200 995 200 995 200 4 995
W - 1A W - 1B W - 1B 80% 100% 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma	s in veh/hr) ach Lanes me Level pproaches ajor Street a Approach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches	(Used i Minin 100% 500 150 150 150 750 750 750 750 750 750 750 750 750 7	if neitho mum Ra 1 70% 350 105 mum Ra 525 53 53 53 mum Ra 1 70% 280 84 84 mum Ra	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480 160 equirem 2 or	lition A ments more 70% 420 140 140 140 0 0 0 0 0 0 0 0 0 0 0 0 0	or B is 1 405 1,806 405 1,806 405 1,806 405	satisfie ,	100% d) 80% Eig d, d 1,557 422 1,557 422 1,557 422 1,557 422	Satisfie Satisfie Satisfie (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508) (1,508)	ed: ed: action est Ho 289 1,157 289 1,157 289 1,157 289	X Yes Yes Irs 1,183 125 1,183 125 1,183 125	I I I	No 995 200 995 200 995 200 995 200
W - 1B W - 100% 100	(volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma Highest on Mir (volume Approa Volur Both Aj on Ma	s in veh/hr) ach Lanes me Level pproaches ajor Street Approach s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level pproaches ajor Street s in veh/hr) ach Lanes me Level s in veh/hr) ach Lanes me Level s in veh/hr) ach Lanes me Level	(Used i Minin 100% 500 150 150 750 750 750 750 750 750 100% 400 120	if neitho mum Ro 1 70% 350 105 mum Ro 525 53 mum Ro 280 84 84 1 70%	er Cond equirem 2 or 100% 600 200 equirem 2 or 100% 900 100 equirem 2 or 100% 480 160 equirem 2 or 100%	lition A nents more 70% 420 140 140 nents more 70% 336 112 nents more 70%	or B is a	satisfie	100% d) 80% Eig A 1,557 422 1,557 422 1,557 422 1,557 422 422 422 422 422	Satisfie Satisfie Satisfie 1,508 1,508 123 1,508 123 1,508 123 1,508 123	ed: ad: iest Ho 289 1,157 289 1,157 289 1,157 289 1,157 289	X Yes Yes Vres 1,183 125 1,183 125 1,183 125 1,183 125 1,183 125	Image: second	NO 995 200 402 995 200 402 995 200 402 995 200

<u>NOTE:</u> The satisfaction of a warrant or warrants shall not in itself require the installation of a traffic control signal

NOTE: The satisfaction of a warrant or warrants shall not in itself require the installation of a traffic control signal

|--|

Satisfied:

X No Yes

This warrant is intended for application where the fact that schoolchildren crossing the major route is the principal reason to consider installing a traffic control signal. For the purposes of this warrant, the word "schoolchildren" includes elementary through high school students. This warrant is satisfied if all three of the criteria below are fulfilled after remedial measures have been considered.

Any remedial measures implemented in or around the intersection to improve the safety of the students as noted in Section 4C.06 Warrant 5, School Crossing in the MUTCD:

Criteria						
Criteria					Yes	No
1.	Enter the number of schoolchildren crossing the major route along with the hour this occurs. The hour can be any 60 minute interval (ex 2:15		•	ossing Hour riod		x
	<i>PM -</i> 3:15 <i>PM enter</i> 2:15 - 3:15). <i>Requires a minimum of</i> 20 schoolchildren durning the any hour.			-		~
2.	2. For both the morning (AM) and afternoon (PM) periods of operation, enter the number of adequate gaps observed for each period and the number of Period Minutes Gaps					Y
	minutes each period lasted. Requires one period to operate with fewer gaps than the number of minutes in the period.	AM PM				^
3.	Is the nearest traffic signal along the major route more than 90m (300 ft	t) from this crossing?	Yes	XNo		x
	If the signal is within 90m (300 ft) of an existing signalize intersection, will it restrict progressive movement of traffic? XYes No					

WARRANT 6 - COORDINATED SIGNAL SYSTEM

Satisfied:

Yes

X No

Progressive movement in a coordinated signal system sometimes necessitates the installation of traffic control signals at intersections that would not otherwise be considered in order to maintain proper paltooning of vehicles. This warrant is satisfied if the below criteria is satified as follows: criteria 1 is satisfied and either criteria 2 or 3 is satisfied.

	Criteria	Fulfilled?			
	Criteria		No		
1.	1. The inclusion of this proposed signal, into the coordinated system, does not result in a signal spacing of less than 305m (1,000 ft)?				
2	a. On a one-way street or a street that has traffic predominantly in one direction, are the adjacent traffic control signals so far apart that they do not provide the necessary degree of vehiclular platooning?		x		
2.	b. On a two-way street, do adjacent traffic control signals <u>not</u> provide the necessary degree of platooning and will the proposed and adjacent traffic control signals collectively provide a progressive operation?		x		

TRAFFIC SIGNAL WARRANTS

WARRANT 7 - CRASH EXPERIENCE

Satisfied:

Yes X No

This warrant is intended for application where the severity and frequency of crashes are the principal reasons to consider the installation of a traffic control signal. The need for a traffic control signal shall be considered if an engineering study finds that criteria 1, 2, and 3 are met.

Criteria		Fulfi Yes	lled? No	
 Adequate trial of alternatives with satisfactory observance and enforcement has fialed to rea frequency as shown below: 	uce the	crash		
				x
 How many crashes within the past 12 months? For this criteria to be met, five or more reported crashes, of types suseptible to correction by the installation of a traffic control signa must have occurred. 	Ι,			х
3. If Warrant 1A or Warrant 1B are 80 percent satisfied of the current values or if Warrant 4,	Me	et?		
4-hour or peak, is met at the 80 percent values.	Yes	No		
Warrant 1, Condition A, Minimum Vehicular Volume (80 percent satisfied):	X			
Warrant 1, Condition B, Interruption of Continuous Traffic (80 percent satisfied):	X		v	
Warrant 4, Four-Hour Volume (80 percent satisfied):		Х	^	
Warrant 4, Peak Hour Volume (80 percent satisfied):		Х		

WARRANT 8 - ROADWAY NETWORK

Satisfied:

X No

Yes

This warrant is used to encourage the concentration and organization of traffic flow on a roadway network. This warrant is satisfied if one of the following 2 criteria is met and both routes meet at least on of the characteristics of a Major Route below.

			Criteria	a			Me Yes	et? No	Fulfi Yes	lled? No
1.	Both of the criteria to the right are	Please enter the total traffic volume during t a minumum of 1,000		x		v				
	required in order to be met.	Based on an engineer this location, meet on weekday? *			x		^			
2.	Enter the total ex immediately proj volume for each	d, entering ny 5 hours of a					← Hou	r		Y
	non-normal busin or Sunday). 1,0 hour required.		← Volu	me		~				

* Supporting data required for verification of the projected 5 year traffic Warrants.

	A major route, as used in this signal warrant, shall have at least one of the characteristics:	e following	Me	et?	Fulfi	lled?
	Characteristics of Major Routes		Yes	No	Yes	No
1.	Is it a part of the street or highway system that serves as the principal	Major Route		Х		
	roadway network for through traffic flow?	* Minor Route		Х		
2.	Does it include rural or suburban highways outside, entering, or traversing	Major Route		Х		v
	a city?	* Minor Route		Х		^
3.	Does it appear as a major route on an official plan, such as a major street	Major Route		Х		
	plan in an urban area traffic and transportation study?	* Minor Route		Х		

* This is a minor route, but for the purposes of this Warrant, shall be considered as the other major route. <u>Note:</u> Supporting data shall be required to verify the routes meet one of the characteristics of a major route.

		NAL WARRANT SUM	
City/Town:	Vestavia Hills	Analysis Performed By:	DC
County:	Jefferson County	Date Analysis Performed:	3/8/2019
Division:	RPCGB	Project Number if Applicable:	180337
Data Date:	2/6/2019	Weather Conditions:	Showers
Major Route: Minor Route:	Columbiana Rd Shades Crest Rd	Appr. Lanes: 2 Appr. Lanes: 1	Critical Approach Speed (mph): 45
Warrant #1: Ei	<u>ght-Hour Vehicular Volun</u>	<u>ne</u> 80% Satisfied	SATISFIED XYes No 100% Satisfied
	Vehicular Volume: on of Continuous Traffic: <i>Anv Remedial Measure</i> .	<i>x</i> Yes No X Yes No <i>x</i> Tried and their Outcome.	X Yes No X Yes No
	2		
<u>Warrant #2: Fo</u>	ur-Hour Vehicular Volum	<u>e</u>	XYes No
<u>Warrant #3:</u> Pe			Yes XNo
	The Unusual Case(s) that Ju	ustifies the use of this Warrant.	
<u>Warrant #4: Pe</u>	<u>destrian Volume</u>		Yes XNo
Warrant #5: Sc	U		Yes XNo
	Remedial Measures Implemente	ed to improve the Safety of the S	Students.
Warrant #6: Co	ordinated Signal System		Yes XNo
<u>Warrant #7:</u> Cr	-		Yes XNo
	Other Alternatives that h	have failed to reduce crashes.	
Warrant #8: Ro	adway Network		Yes XNo
Warrant #9: Int	tersection Near a Grade C	rossing	Yes XNo
CONCLUSIONS		Warrants Satisfied	l: 1 2
Remarks:			

Appendix G – CARS Reports

Curve: Blue Lake Drive at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic

Posted Speed: 35 mph Selected RAS - Left: 25 mph Selected RAS - Right: 20 mph

Analysis summary

Pass #	Turn Direction	Travel Direction	Point of Curvature Latitude Longitude	Point of Tangent Latitude Longitude		Average Test Speed		Curve Length	Deflection Angle				Min. Calculated Advisory Speed	Recommended Advisory Speed (RAS)
1	Right	South-West	33.45109° -86.71785°	33.45027° -86.71828°	98.3%	35.1 mph	292 ft	346 ft	58°	F	-1.9%	A	21.3 mph	20 mph
2	Left	East	33.45031° -86.71824°	33.45115° -86.71781°	98.3%	35.9 mph	297 ft	352 ft	58°	F	-2.0%	В	25.0 mph	25 mph
3*	Left	North-East	33.45031° -86.71823°	33.45116° -86.71781°	98.8%	35.0 mph	288 ft	354 ft	60°	F	-2.6%	A	24.3 mph	25 mph
4*	Right	South	33.45113° -86.71786°	33.45035° -86.71822°	98.3%	36.1 mph	294 ft	322 ft	55°	F	-5.3%	A	23.2 mph	20 mph

Sign recommendation summary

Pass #	Differential	Curve Sign	Curve Sign Requirements	Advisory Speed Sign			Chevron Spacing	Chevron Requirements	Note
1	-15 mph	W1-1	required	20 mph	required	W1-8	80 ft	required	
2	-10 mph	W1-1	required	25 mph	required	W1-8	80 ft	recommended	
3*	-10 mph	W1-1	required	25 mph	required	W1-8	80 ft	recommended	
4*	-15 mph	W1-1	required	20 mph	required	W1-8	80 ft	required	

*Selected passes shaded and in bold

Curve: Blue Lake Drive at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Left: 25 mph Selected RAS - Right: 20 mph

Curve map reference - Blue Lake Drive at Sicard Hollow Road

Printed on 03/22/2019 11:53 Page 2 of 5 This report is an output from the Rieker® Curve Advisory Reporting Service (CARS^M), which provides recommendations based on the methods for Establishing Advisory Speed published by the US Federal Highway Administration, the 2009 MUTCD and the data collected by the user. Due to the inherent variability of road geometries, driving practices, and data analysis, the results should be verified by qualified personnel, licensed to practice in the municipality for which these data are intended to be used. Created By ccochran@sain.com Saved On 03/22/2019 11:52 Report Version 2.128

Curve: Blue Lake Drive at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Left: 25 mph Selected RAS - Right: 20 mph

Side friction summary - Blue Lake Drive at Sicard Hollow Road, pass 3

Radius: 301 ft; Super elevation: -7.8%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	4.8	5.7	7.3	9.4	12.2	15.5	19.3	23.4	27.8	32.3	36.8	41.2	45.4	49.4

Theoretical side friction at point generating the maximum side friction value

Curve: Blue Lake Drive at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Left: 25 mph Selected RAS - Right: 20 mph

Side friction summary - Blue Lake Drive at Sicard Hollow Road, pass 4

Radius: 300 ft; Super elevation: -9.0%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	5.4	6.4	7.9	10.1	12.9	16.2	19.9	24.0	28.4	32.9	37.3	41.7	45.8	49.7

Theoretical side friction at point generating the maximum side friction value

Curve: Blue Lake Drive at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Left: 25 mph Selected RAS - Right: 20 mph

Data session summary - Blue Lake Drive at Sicard Hollow Road

Pass #	Data Session File Name		Prior Calibration Subsequent Calibration
1	ccochran@sain.com 2017/07/11 15:37:30 SN808770		Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
2	ccochran@sain.com 2017/07/11 15:40:49 SN808770		Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
3	ccochran@sain.com 2017/07/11 15:44:53 SN808770	07/11/17 15:44 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
4	ccochran@sain.com 2017/07/11 15:48:22 SN808770	07/11/17 15:48 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55

Curve: Cahaba Heights Road at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic

Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 35 mph

Analysis summary

Pass #	Turn Direction	Travel Direction	Point of Curvature Latitude Longitude	Point of Tangent Latitude Longitude		Average Test Speed	Curve Radius	Curve Length	Deflection Angle				Min. Calculated Advisory Speed	Recommended Advisory Speed (RAS)
1	Left	South-West	33.45192° -86.71749°	33.45132° -86.71783°	98.1%	36.5 mph	364 ft	253 ft	36°	F	8.3%	A	38.8 mph	35 mph
2*	Right	East	33.45148° -86.71777°	33.45208° -86.71731°	99.2%	35.8 mph	368 ft	265 ft	38°	F	8.5%	A	38.3 mph	35 mph
3	Right	East	33.45122° -86.71781°	33.45216° -86.71717°	98.4%	35.2 mph	381 ft	426 ft	55°	F	7.3%	A	38.9 mph	35 mph
4*	Left	South-West	33.45216° -86.71718°	33.45136° -86.71784°	99.0%	35.7 mph	414 ft	373 ft	46°	F	6.0%	В	38.7 mph	35 mph

Sign recommendation summary

Pass #	Differential	Curve Sign	Curve Sign Requirements	Advisory Speed Sign			Chevron Spacing	Chevron Requirements	Note
1	N/A	W1-2	none	35 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
2*	N/A	W1-2	none	35 mph	none	W1-8	80 ft		The Recommended Advisory Speed for this pass is at or above the posted speed limit
3	N/A	W1-2	none	35 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
4*	N/A	W1-2	none	35 mph	none	W1-8	120 ft		The Recommended Advisory Speed for this pass is at or above the posted speed limit

*Selected passes shaded and in bold

This report is an output from the Rieker® Curve Advisory Reporting Service (CARS[®]), which provides recommendations based on the methods for Establishing Advisory Speed published by the US Federal Highway Administration, the 2009 MUTCD and the data collected by the user. Due to the inherent variability of road geometries, driving practices, and data analysis, the results should be verified by qualified personnel, licensed to practice in the municipality for which these data are intended to be used.

Curve: Cahaba Heights Road at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 35 mph

Printed on 03/22/2019 12:03 Page 2 of 5 This report is an output from the Rieker® Curve Advisory Reporting Service (CARS^M), which provides recommendations based on the methods for Establishing Advisory Speed published by the US Federal Highway Administration, the 2009 MUTCD and the data collected by the user. Due to the inherent variability of road geometries, driving practices, and data analysis, the results should be verified by qualified personnel, licensed to practice in the municipality for which these data are intended to be used. Created By ccochran@sain.com Saved On 03/22/2019 12:03 Report Version 2.128

Curve: Cahaba Heights Road at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 35 mph

Side friction summary - Cahaba Heights Road at Sicard Hollow Road, pass 2

Radius: 402 ft; Super elevation: 3.5%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	-1.8	-1.1	0.1	1.8	3.9	6.5	9.5	13.0	16.8	20.8	25.1	29.4	33.7	37.9

Theoretical side friction at point generating the maximum side friction value

Curve: Cahaba Heights Road at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 35 mph

Side friction summary - Cahaba Heights Road at Sicard Hollow Road, pass 4

Radius: 417 ft; Super elevation: 3.1%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	-1.6	-0.9	0.3	1.9	3.9	6.4	9.4	12.7	16.3	20.3	24.4	28.6	32.9	37.0

Theoretical side friction at point generating the maximum side friction value

Curve: Cahaba Heights Road at Sicard Hollow Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 35 mph

Data session summary - Cahaba Heights Road at Sicard Hollow Road

Pass #	Data Session File Name	Prior Calibration Subsequent Calibration
1	ccochran@sain.com 2017/07/11 15:37:30 SN808770	 Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
2	ccochran@sain.com 2017/07/11 15:40:49 SN808770	 Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
3	ccochran@sain.com 2017/07/11 15:44:53 SN808770	 Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
4	ccochran@sain.com 2017/07/11 15:48:22 SN808770	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55

Curve: Cahaba Heights Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 40 mph

Analysis summary

Pass #	Turn Direction	Travel Direction	Point of Curvature Latitude Longitude	Point of Tangent Latitude Longitude	GPS Fit	Average Test Speed	Curve Radius	Curve Length	Deflection Angle			Curve Grade	Min. Calculated Advisory Speed	Recommended Advisory Speed (RAS)
1	Right	South	33.45342° -86.71635°	33.45252° -86.71665°	99.1%	40.2 mph	425 ft	351 ft	43°	F	4.5%	C	38.9 mph	35 mph
2	Left	North-East	33.45245° -86.71674°	33.45411° -86.71672°	95.9%	34.5 mph	397 ft	700 ft	77°	F	10.5%	C	37.3 mph	35 mph
3*	Right	South	33.45408° -86.71673°	33.45246° -86.71673°	97.3%	35.4 mph	382 ft	668 ft	77°	F	9.8%	C	34.7 mph	35 mph
4*	Left	North-East	33.45283° -86.71642°	33.45413° -86.71674°	97.6%	34.5 mph	383 ft	530 ft	65°	F	9.7%	C	40.5 mph	40 mph
5	Right	South	33.45407° -86.71673°	33.45245° -86.71674°	97.0%	35.1 mph	382 ft	681 ft	77°	F	9.4%	C	36.7 mph	35 mph

Sign recommendation summary

Pass #	Differential	Curve Sign	Curve Sign Requirements	Advisory Speed Sign	Speed Sign Requirements	Chevron Sign	Chevron Spacing	Chevron Requirements	Note
1	N/A	W1-2	none	35 mph	none	W1-8	120 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
2	N/A	W1-2	none	35 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
3*	N/A	W1-2	none	35 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
4*	N/A	W1-2	none	40 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit
5	N/A	W1-2	none	35 mph	none	W1-8	80 ft	none	The Recommended Advisory Speed for this pass is at or above the posted speed limit

*Selected passes shaded and in bold

Curve: Cahaba Heights Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 40 mph

Curve map reference - Cahaba Heights Road

Printed on 03/22/2019 12:08 Page 2 of 5 This report is an output from the Rieker® Curve Advisory Reporting Service (CARS[®]), which provides recommendations based on the methods for Establishing Advisory Speed published by the US Federal Highway Administration, the 2009 MUTCD and the data collected by the user. Due to the inherent variability of road geometries, driving practices, and data analysis, the results should be verified by qualified personnel, licensed to practice in the municipality for which these data are intended to be used. Created By ccochran@sain.com Saved On 03/22/2019 12:07 Report Version 2.128

Curve: Cahaba Heights Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 40 mph

Side friction summary - Cahaba Heights Road, pass 3

Radius: 446 ft; Super elevation: -2.9%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	1.8	2.5	3.6	5.0	7.0	9.3	12.0	15.0	18.3	21.9	25.7	29.6	33.4	37.3

Theoretical side friction at point generating the maximum side friction value

Curve: Cahaba Heights Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 40 mph

Side friction summary - Cahaba Heights Road, pass 4

Radius: 402 ft; Super elevation: 6.3%

Advisory Speed (mph)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Auto Side friction guideline (deg)	16	16	16	16	14	14	12	12	12	12	12	12	12	12
Max side friction (deg)	-3.4	-2.7	-1.5	0.2	2.3	4.9	8.0	11.4	15.3	19.4	23.7	28.1	32.5	36.9

Theoretical side friction at point generating the maximum side friction value

Curve: Cahaba Heights Road Corridor: N/A Mile Post: N/A

Lateral Friction Limit: 12° Model Geometry: Parabolic Posted Speed: 35 mph Selected RAS - Right: 35 mph Selected RAS - Left: 40 mph

Data session summary - Cahaba Heights Road

Pass #	Data Session File Name	Collected On Collected By	Prior Calibration Subsequent Calibration
1	ccochran@sain.com 2017/07/11 15:37:30 SN808770	07/11/17 15:37 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
2	ccochran@sain.com 2017/07/11 15:40:49 SN808770	07/11/17 15:40 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
3	ccochran@sain.com 2017/07/11 15:42:30 SN808770	07/11/17 15:42 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
4	ccochran@sain.com 2017/07/11 15:44:53 SN808770	07/11/17 15:44 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55
5	ccochran@sain.com 2017/07/11 15:48:22 SN808770	07/11/17 15:48 ccochran@sain.com	Passed on 07/11/17 15:07 Passed on 07/11/17 16:55

Appendix H — Previous Study Recommendations at US-31 and Columbiana Road/I-65 Northbound Ramps

Feet

associates

Potential Wrong Way Movement Assessment at Interstate Ramps Alabama Department of Transportation

Feet

associates

Install pair of wrong way arrow pavement markings and surround with Type 2-C RPMs

e eelere

*Proposed signal head for the western most signal facing southbound traffic

Concept Map: I-65, Exit 252, West Side, US-31/Montgomery Hwy

Potential Wrong Way Movement Assessment at Interstate Ramps Alabama Department of Transportation

Appendix I – Opinion of Probable Costs

Rocky Ridge Roa	d @ Dolly Ric	lge Road (S	hort Term)					
Item Description	Unit	Quantity	Unit Price	Amount				
Concrete Slope Paving ¹	CY	60	\$250	\$15,000				
Installation of Left Turn Phase ²	LS	1	\$11,000	\$11,000				
Span Wire Reconfiguration ³	LS	1	\$13,000	\$13,000				
Pedestian Facilities⁴	Pedestian Facilities ^₄ By Others By							
Traffic Control	LS	1	\$10,000	\$10,000				
			Subtotal	\$49,000				
Contigency			25%	\$13,000				
		C	onstruction Costs	\$62,000				
Engineering Controls			1.3%	\$1,000				
Mobilization			9.7%	\$7,000				
Construction Engineering and Inspection			15%	\$11,000				
		Con	struction Subtotal	\$81,000				
Preliminary Engineering (Environmental, Survey, Ge	otech, Traffic, I	Design)	17%	\$14,000				
Utility Relocation and Right-of-Way Cost ^e				NOT INCLUDED				
			Subtotal	\$95,000				
	Total Esti	mated Pro	ject Cost (2019)7	\$100,000				

Notes:

1. Raised channelizing island at the right-in, right-out gas station driveway along Rocky Ridge Road just north of the intersection.

2. Left turn phase for Rocky Ridge Road northbound and southbound approaches with a flashing yellow arrow (FYA) signal head arrangement for both left turn conditions. Includes the installation of two signal heads and 2" conduit.

3. The existing span wire connection should be converted to a box arrangement. Long term recommendations should be considered in the placement of any new signal poles. Rock excavation for signal pole installation is not expected. If traditional poles are not feasible or desired, poles with double mast arms could be used; however, this would increase the construction cost by \$75k to \$100k.

4. Pedestrian timings, signal heads, and crosswalks in accordance with the plans for sidewalks in the area will be done by others.

5. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

6. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements may require right-of-way acquisition and/or utility relocations.

7. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST. ALDOT'S INDIRECT COSTS ARE NOT INCLUDED IN THE ESTIMATED PROJECT COSTS.

Rocky Ridge Roa	ad @ Dolly Rid	ge Road (L	ong Term)	
Item Description	Unit	Quantity	Unit Price	Amount
Clearing & Grubbing (\$4000/Acre) ¹	LS	1	\$4,000	\$4,000
Jnclassified Excavation	CY	3600	\$15	\$54,000
Borrow Excavation	CY	2400	\$15	\$36,000
C&G Removal	LF	1000	\$20	\$20,000
Sidewalk (4") Removal	SY	80	\$25	\$2,000
Storm Pipe Removal	LF	1000	\$15	\$15,000
Storm Inlet Removal	EACH	8	\$500	\$4,000
leadwall Removal	EACH	4	\$500	\$2,000
Brick Wall Removal	LF	160	\$300	\$48,000
Retaining Wall Removal	LF	50	\$500	\$25,000
Remove Existing Signs ²	LS	1	\$500	\$500
Brick Sign Removal	EACH	1	\$600	\$600
Vearing Surface (1.5")	TON	80	\$90	\$7,200
Binder (2-2" layers)	TON	200	\$100	\$20,000
Aggregate Base (6")	SY	900	\$25	\$22,500
Tack Coat	GALLON	60	\$2	\$120
Curb & Gutter	LF	1000	\$20	\$20,000
Concrete Sidewalk (4")	SY	80	\$70	\$5,600
Storm Pipe	LF	1000	\$50	\$50,000
Storm Inlets	EACH	8	\$2,500	\$20,000
Pipe End Treatment	EACH	4	\$1,500	\$6,000
Structure Excavation	CY	500	\$15	\$7,500
Foundation Backfill	CY	250	\$30	\$7,500
opsoil	CY	400	\$15	\$6,000
Seeding and Mulching	AC	1	\$2,400	\$2,400
Solid Sod	SY	830	\$8	\$6,640
Traffic Stripe	MILE	1	\$3,200	\$3,200
raffic Markings, & Legends	SF	260	\$4	\$1,040
Aailbox Reset	SF	2	\$200	\$400
Roadway Signs	EACH	40	\$30	\$1,200
Sign Post	LF	80	\$15	\$1,200
Signal Poles ³	EACH	4	\$5,000	\$20,000
Retaining Wall	SF	250	\$200	\$50,000
Erosion Control	LS	1	\$10,000	\$10,000
Traffic Control	LS	1	\$40,000	\$40,000
			Subtotal	\$519,600
			25%	\$130,000
	•	C	onstruction Costs	\$650,000
Engineering Controls			1.3%	\$9,000
Aobilization			9.7%	\$64,000
Construction Engineering and Inspection			15%	\$109,000
	•	Con	struction Subtotal	\$832,000
Preliminary Engineering (Environmental, Survey, Ge	eotech, Traffic. D		17%	\$142,000
Jtility Relocation and Right-of-Way Cost ⁵	, , _	J /		NOT INCLUDE
sandy realised and regit of way boot			Subtotal	\$974,000
ALDOT Indirect Costs			13.63%	\$133,000
	1		m Project (2019)	

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

*See additional notes on following sheet

Rocky Ridge Road @ Dolly Ridge Road (Long Term)

Notes:

1. Clearing and grubbing includes clearing of trees in the right of way on Rocky Ridge and Dolly Ridge Roads.

2. Includes roadway and non-roadway signs.

3. Rock excavation for signal pole installation is not expected.

4. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

5. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

6. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

	lenuarions		Flobable Cost	
Sicard Hollow Road @ Blue L	ake Drive/Ca	ahaba Heigh	nts Road (Short Ter	·m)
Item Description	Unit	Quantity	Unit Price	Amount
Clearing and Grubbing (\$4000/Acre) ¹	LS	1	\$4,000	\$4,000
Roadway Signs	SF	100	\$30	\$3,000
Signs Posts	LF	150	\$15	\$2,250
Roadway Lighting ²	\$150,000	\$150,000		
Traffic Control	LS	1	\$10,000	\$10,000
			Subtotal	\$169,250
Contigency ³			25%	\$43,000
		C	onstruction Costs	\$213,000
Engineering Controls			1.3%	\$3,000
Mobilization			9.7%	\$21,000
Construction Engineering and Inspection			15%	\$36,000
		Con	struction Subtotal	\$273,000
Preliminary Engineering (Environmental, Survey, Geo	otech, Traffic, D	Design)	17%	\$47,000
Utility Relocation and Right-of-Way Cost⁴	NOT INCLUDED			
			Subtotal	\$320,000
	Total Esti	mated Pro	ject Cost (2019)⁵	\$320,000

Notes:

1. Clearing and Grubbing includes trimming vegetation to improve intersection sight distance.

2. Install lighting at the intersection to improve intersection visibility during nighttime conditions.

3. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

4. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

5. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST. ALDOT'S INDIRECT COSTS ARE NOT INCLUDED IN THE ESTIMATED PROJECT COSTS.

Sicard Hollow Road @ Blue		-		·m)
Item Description	Unit	Quantity	Unit Price	Amount
Clearing & Grubbing (\$4000/Acre)	LS	1	\$8,000	\$8,000
Unclassified Excavation ¹	CY	9000	\$25	\$225,000
Borrow Excavation	CY	6000	\$15	\$90,000
Remove Concrete Median	SY	150	\$25	\$3,750
Remove Existing Signs	LS	1	\$500	\$500
Storm Pipe Remove	LF	200	\$15	\$3,000
Wearing Surface (1.5")	TON	200	\$90	\$18,000
Binder (2-2" layers)	TON	550	\$100	\$55,000
Aggregate Base (6")	SY	2450	\$25	\$61,250
Tack Coat	GALLON	150	\$2	\$300
Curb & Gutter	LF	1000	\$20	\$20,000
Concrete Apron and Islands	SY	270	\$250	\$67,500
Storm Pipe	LF	1000	\$50	\$50,000
Storm Inlets	EACH	8	\$2,500	\$20,000
Pipe End Treatment	EACH	8	\$1,500	\$12,000
Structure Excavation	CY	500	\$15	\$7,500
Foundation Backfill	CY	250	\$30	\$7,500
Topsoil	CY	250	\$15	\$3,750
Seeding and Mulching	AC	200	\$2,400	\$4,800
Solid Sod	SY	750	\$8	\$6,000
Traffic Stripe	MILE	1	\$3,200	\$3,200
Traffic Markings, & Legends	SF	210	\$4	\$840
Signs	SF	100	\$30	\$3,000
Sign Posts	LF	150	\$15	\$2,250
Erosion Control	LS	1	\$20,000	\$20,000
Traffic Control	LS	1	\$50,000	\$50,000
	20		Subtotal	\$743,140
Contigency ²			25%	\$186,000
Contigonoy			Construction Costs	\$930,000
Engineering Controls			1.3%	\$13,000
Mobilization			9.7%	\$91,000
Construction Engineering and Inspection			15%	\$156,000
		Con	struction Subtotal	\$1,190,000
Preliminary Engineering (Environmental, Survey, Ge	otech, Traffic. D		25%	\$298,000
Utility Relocation and Right-of-Way Cost ⁴	, , –	57		NOT INCLUDED
			Subtotal	\$1,488,000
ALDOT Indirect Costs			13.63%	\$203,000
Additional Cost E	stimated For	Long Ter		\$1,700,000

Total Estimated Project Cost (2019)⁵ \$2,020,000

Notes:

1. Rock excavation is anticipated.

2. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

3. Increased percentage due to the complexity of roundabout design.

4. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

5. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

Rocky Ridge Road @ Shades Crest Road and US-280 (Short Term)									
Item Description	Unit	Quantity	Unit Price	Amount					
Clearing & Grubbing (\$4000/Acre)	LS	1	\$4,000	\$4,000					
Unclassified Excavation ¹	CY	6400	\$25	\$160,000					
Borrow Excavation	CY	4300	\$15	\$64,500					
Storm Pipe Remove	LF	850	\$15	\$12,750					
Storm Inlet Remove	EACH	4	\$500	\$2,000					
Wearing Surface (1.5")	TON	100	\$90	\$9,000					
Binder (2-2" layers)	TON	200	\$100	\$20,000					
Aggregate Base (6")	SY	800	\$25	\$20,000					
Tack Coat	GALLON	60	\$2	\$120					
Curb & Gutter	LF	850	\$20	\$17,000					
Storm Pipe	LF	850	\$50	\$42,500					
Storm Inlets	EACH	6	\$2,500	\$15,000					
Pipe End Treatment	EACH	2	\$1,500	\$3,000					
Structure Excavation	CY	500	\$15	\$7,500					
Foundation Backfill	CY	250	\$30	\$7,500					
Topsoil	CY	500	\$15	\$7,500					
Seeding and Mulching	AC	1	\$2,400	\$2,400					
Solid Sod	SY	2000	\$8	\$16,000					
Traffic Stripe	MILE	1	\$3,200	\$3,200					
Traffic Markings, & Legends	SF	400	\$4	\$1,600					
Roadway Signs	SF	60	\$30	\$1,800					
Sign Posts	LF	60	\$15	\$900					
Erosion Control	LS	1	\$10,000	\$10,000					
Traffic Control	LS	1	\$40,000	\$40,000					
			Subtotal	\$468,270					
Contigency ²			25%	\$118,000					
		<u> </u>	Construction Costs	\$587,000					
Engineering Controls			1.3%	\$8,000					
Mobilization			9.7%	\$57,000					
Construction Engineering and Inspection			15%	\$98,000					
			struction Subtotal	\$750,000					
Preliminary Engineering (Environmental, Survey, Ge	eotech, Traffic, D	esign)	17%	\$128,000					
Utility Relocation and Right-of-Way Cost ³				NOT INCLUDED					
		-	Subtotal	\$878,000					
ALDOT Indirect Costs			13.63%	\$120,000					

Total Estimated Project Cost (2019)⁴ \$1,000,000

Notes:

1. Rock excavation is likely.

2. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

3. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

4. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

US-31 @ Shades Crest Road (Short Term)				
Item Description	Unit	Quantity	Unit Price	Amount
Convert Left Turn Phase ¹	LS	1	\$11,000	\$11,000
Traffic Control	LS	1	\$10,000	\$10,000
	Subtotal	\$21,000		
Contigency ²			25%	\$6,000
	\$27,000			
Engineering Controls			1.3%	\$1,000
Mobilization			9.7%	\$3,000
Construction Engineering and Inspection			15%	\$5,000
	\$36,000			
Preliminary Engineering (Environmental, Survey, Geotech, Traffic, Design) 17%				\$7,000
Utility Relocation and Right-of-Way Cost ³				NOT INCLUDED
	\$43,000			
Total Estimated Proiect Cost (2019) ⁴				\$50,000

Total Estimated Project Cost (2019)

Notes:

1. Convert US-31 northbound left turn phase to protected-only.

2. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

3. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

4. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST. ALDOT'S INDIRECT COSTS ARE NOT INCLUDED IN THE ESTIMATED PROJECT COSTS.

Improvement Recon US-31 @ Sh	nades Crest Ro			
Item Description	Unit	Quantity	Unit Price	Amount
Clearing & Grubbing (\$4000/Acre)	LS	1	\$4,000	\$4,000
Unclassified Excavation	CY	4800	\$15	\$72,000
Borrow Excavation	CY	3200	\$15	\$48,000
Storm Pipe Removal	LF	150	\$15	\$2,250
Headwall Removal	EACH	4	\$500	\$2,000
Brick Sign Removal	EACH	3	\$600	\$1,800
Wearing Surface (1.5")	TON	80	\$90	\$7,200
Binder (2-2" layers)	TON	800	\$100	\$80,000
Aggregate Base (6")	SY	900	\$25	\$22,500
Tack Coat	GALLON	60	<u>\$23</u>	\$120
Concrete Apron and Islands	SY	375	\$250	\$93,750
Curb and Gutter	LF	200	\$20	\$4,000
Storm Pipe		180	\$50	\$9,000
Storm Inlet	EACH	2	\$2,500	\$5,000
Pipe End Treatment	EACH	4	\$2,500 \$1,500	\$6,000
Structure Excavation	CY	100	\$1,500 \$15	\$1,500
Foundation Backfill	CY	50	\$30	\$1,500
Topsoil	CY	350	<u>\$30</u> \$15	\$5,250
Seeding and Mulching	AC	1	\$2,400	\$2,400
Seeding and Mulching Solid Sod	SY	750	\$2,400 \$8	\$6,000
Traffic Stripe	MILE	1	\$3,200	\$3,200
Traffic Markings, & Legends	SF	450	\$3,200 \$4	\$1,800
Roadway Signs	SF SF	450 30	\$30	\$900
Sign Posts	LF	<u> </u>	\$30 \$15	\$900 \$750
Mail Box Reset	EACH		\$200	\$200
	LS	1	\$200 \$11,000	\$200
Flashing Yellow Arrow (FYA)				
Signal Poles ²	EACH	4	\$5,000	\$20,000
Erosion Control	LS	1	\$10,000	\$10,000
Traffic Control	LS	1	\$80,000	\$80,000
• · · · · 3			Subtotal	\$502,120
Contigencv ³			25%	\$126,000
			Construction Costs	\$629,000
Engineering Controls			1.3% 9.7%	\$9,000
Mobilization			<u>9.7%</u> 15%	\$62,000
Construction Engineering and Inspection			15% Istruction Subtotal	\$105,000
	\$805,000			
Preliminary Engineering (Environmental, Surve	\$137,000			
Utility Relocation and Right-of-Way Cost ⁴	NOT INCLUDED			
	\$942,000			
ALDOT Indirect Costs			13.63%	\$129,000
Additional Co	\$1,080,000 \$1,130,000			

Notes:

1. Dual widening was assume for both both Shades Crest Rd approaches to US-31. Six feet on each side for additional turn lane.

2. Cost for installing new signal poles is included since widening of Shades Crest may impact existing pole locations. Rock excavation for signal pole installation is not expected.

3. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

4. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-ofway acquisition and/or utility relocations.

5. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

US-31 @ Columbiana Road/I-65 Northbound Ramps				
Item Description	Unit	Quantity	Unit Price	Amount
Pavement Removal	SY	850	\$25	\$21,250
Milling	SY	1800	\$5	\$9,000
Wearing Surface (1.5")	TON	150	\$90	\$13,500
Tack Coat	GALLON	110	\$2	\$220
Concrete Islands (6")	CY	2	\$250	\$500
Curb and Gutter	LF	950	\$20	\$19,000
Storm Pipe	LF	200	\$50	\$10,000
Storm Pipe End Treatment	EACH	2	\$1,500	\$3,000
Structure Excavation	CY	200	\$15	\$3,000
Foundation Backfill	CY	100	\$30	\$3,000
Topsoil	CY	150	\$15	\$2,250
Solid Sod	SY	850	\$8	\$6,800
Traffic Stripe	MILE	1	\$3,200	\$3,200
Traffic Markings, & Legends	SF	600	\$4	\$2,400
Roadway Signs	SF	50	\$30	\$1,500
Sign Posts	LF	75	\$15	\$1,125
Erosion Control	LS	1	\$10,000	\$10,000
Traffic Control	LS	1	\$60,000	\$60,000
	\$169,745			
Contigency ¹			25%	\$43,000
		C	Construction Costs	\$213,000
Engineering Controls			1.3%	\$3,000
Mobilization			9.7%	\$21,000
Construction Engineering and Inspection			15% Instruction Subtotal	\$36,000
	\$273,000			
Preliminary Engineering (Environmental, Survey, Ge	\$47,000			
Utility Relocation and Right-of-Way Cost ²	NOT INCLUDED			
Subtotal				\$320,000
ALDOT Indirect Costs			13.63%	\$44,000
	Total Estir	mated Pro	pject Cost (2019) ³	\$370,000

Notes:

1. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

2. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

3. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

Columbiana Road @ Shades Crest Road/Vestaview Lane				
Item Description	Unit	Quantity	Unit Price	Amount
Clearing and Grubbing (\$4000/Acre)	LS	1	\$4,000	\$4,000
Unclassified Excavation	CY	2000	\$15	\$30,000
Borrow Excavation	CY	1400	\$15	\$21,000
Pavement Removal	SY	700	\$25	\$17,500
Wearing Surface (1.5")	TON	50	\$90	\$4,500
Binder (2-2" layers)	TON	110	\$100	\$11,000
Aggregate Base (6")	SY	500	\$25	\$12,500
Tack Coat	GALLON	30	\$2	\$60
Concrete Islands (6")	CY	6	\$250	\$1,500
Concrete Sidewalk (4")	SY	100	\$70	\$7,000
Topsoil	CY	150	\$15	\$2,250
Solid Sod	SY	850	\$8	\$6,800
Traffic Stripe	MILE	1	\$3,200	\$3,200
Traffic Markings, & Legends	SF	600	\$4	\$2,400
Roadway Signs	SF	20	\$30	\$600
Sign Posts	LF	50	\$15	\$750
Pedestrian Signal Heads w/ Countdown Display	LS	1	\$15,000	\$15,000
Signalization ¹	LS	1	\$150,000	\$150,000
Erosion Control	LS	1	\$10,000	\$10,000
Traffic Control	LS	1	\$60,000	\$60,000
	\$356,060			
Contigency ²			25%	\$90,000
		C	Construction Costs	\$447,000
Engineering Controls			1.3%	\$6,000
Mobilization			9.7%	\$44,000
Construction Engineering and Inspection			15% struction Subtotal	\$75,000
	\$572,000			
Preliminary Engineering (Environmental, Survey, Geot	\$98,000			
Utility Relocation and Right-of-Way Cost ³	NOT INCLUDED			
Subtotal				\$670,000
ALDOT Indirect Costs			13.63%	\$92,000
	\$770,000			

Total Estimated Project Cost (2019)⁴ \$770,000

Notes:

1. Cost of signalization only necessary if the city opts for signalization of the northern intersection of Columbiana Road and Shades Crest Road. Rock excavation for signal pole installation is not expected.

2. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

3. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

4. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.

US-31 @ Vestavia Plaza/City Hall					
Item Description	Unit	Quantity	Unit Price	Amount	
Unclassified Excavation	CY	40	\$15	\$600	
Borrow Excavation	CY	30	\$15	\$450	
Concrete Sidewalk (4")	SY	330	\$70	\$23,100	
Curb and Gutter	LF	150	\$20	\$3,000	
Storm Pipe	LF	150	\$50	\$7,500	
Storm Inlet	EACH	2	\$2,500	\$5,000	
Structure Excavation	CY	80	\$15	\$1,200	
Foundation Backfill	CY	40	\$30	\$1,200	
Topsoil	CY	10	\$15	\$150	
Solid Sod	SY	330	\$8	\$2,640	
Traffic Stripe	MILE	1	\$3,200	\$3,200	
Traffic Markings, & Legends	SF	800	\$4	\$3,200	
Pedestrian Signal Head Pedastals w/ Countdown Display	LS	1	\$21,000	\$21,000	
Erosion Control	LS	1	\$10,000	\$10,000	
Traffic Control	LS	1	\$50,000	\$50,000	
	\$132,240				
Contigency ¹	25%	\$34,000			
	construction Costs	\$167,000			
Engineering Controls			1.3%	\$3,000	
Mobilization			9.7%	\$17,000	
Construction Engineering and Inspection			15%	\$29,000	
	\$216,000				
Preliminary Engineering (Environmental, Survey, Geote	\$37,000				
Utility Relocation and Right-of-Way Cost ²	NOT INCLUDED				
	\$253,000				
	\$260.000				

Total Estimated Project Cost (2019)³ \$260,000

Notes:

1. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

2. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

3. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST. ALDOT'S INDIRECT COSTS ARE NOT INCLUDED IN THE ESTIMATED PROJECT COST.

US-31 @ Pizitz Drive					
Item Description	Unit	Quantity	Unit Price	Amount	
Unclassified Excavation	CY	80	\$15	\$1,200	
Borrow Excavation	CY	50	\$15	\$750	
Concrete Sidewalk (4")	SY	80	\$70	\$5,600	
Concrete Island (6")	CY	20	\$250	\$5,000	
Curb and Gutter	LF	150	\$20	\$3,000	
Storm Pipe	LF	150	\$50	\$7,500	
Storm Inlet	EACH	3	\$2,500	\$7,500	
Structure Excavation	CY	80	\$15	\$1,200	
Foundation Backfill	CY	40	\$30	\$1,200	
Topsoil	CY	15	\$15	\$225	
Solid Sod	SY	80	\$8	\$640	
Traffic Stripe	MILE	1	\$3,200	\$3,200	
Remove Traffic Stripe	MILE	1	\$2,725	\$2,725	
Traffic Markings, & Legends	SF	350	\$4	\$1,400	
Pedestrian Signal Head Pedastals w/ Countdown Display	LS	1	\$15,000	\$15,000	
Erosion Control	LS	1	\$10,000	\$10,000	
Traffic Control	LS	1	\$50,000	\$50,000	
	•		Subtotal	\$116,140	
Contigency ¹			25%	\$30,000	
	\$147,000				
Engineering Controls			1.3%	\$2,000	
Mobilization			9.7%	\$15,000	
Construction Engineering and Inspection			15%	\$25,000	
	\$189,000				
Preliminary Engineering (Environmental, Survey, Geote	\$33,000				
Utility Relocation and Right-of-Way Cost ²	NOT INCLUDED				
	\$222,000				
	\$230.000				

Total Estimated Project Cost (2019)³ \$230,000

Notes:

1. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

2. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

3. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST. ALDOT'S INDIRECT COSTS ARE NOT INCLUDED IN THE OVERALL PROJECT COST.

Dolly Ridge Road @ Gresham Drive				
Item Description	Unit	Quantity	Unit Price	Amount
Clearing & Grubbing (\$4000/Acre) ¹	LS	1	\$4,000	\$4,000
Unclassified Excavation	CY	5800	\$15	\$87,000
Borrow Excavation	CY	3900	\$15	\$58,500
Milling	SY	5350	\$5	\$26,750
Wearing Surface (1.5")	TON	550	\$90	\$49,500
Binder (2-2" layers)	TON	300	\$100	\$30,000
Aggregate Base (6")	SY	1500	\$25	\$37,500
Tack Coat	GALLON	400	\$2	\$800
Topsoil	CY	750	\$15	\$11,250
Seeding and Mulching	AC	1	\$2,400	\$2,400
Traffic Stripe	MILE	1	\$3,200	\$3,200
Traffic Markings, & Legends	SF	500	\$4	\$2,000
Roadway Signs	SF	50	\$30	\$1,500
Sign Post	LF	150	\$15	\$2,250
Signal Timing Adjustment ²	LS	1	\$1,000	\$1,000
Erosion Control	LS	1	\$10,000	\$10,000
Traffic Control	LS	1	\$20,000	\$20,000
	\$347,650			
Contigency ³			25%	\$87,000
	\$435,000			
Engineering Controls			1.3%	\$6,000
Mobilization			9.7%	\$43,000
Construction Engineering and Inspection			15%	\$73,000
	\$557,000			
Preliminary Engineering (Environmental, Survey, Ge	\$95,000			
Utility Relocation and Right-of-Way Cost ⁵	NOT INCLUDED			
			Subtotal	\$652,000
ALDOT Indirect Costs			13.63%	\$89,000
	Total Estir	nated Pro	ject Cost (2019) ⁶	\$750,000

Total Estimated Project Cost (2019)

Notes:

1. Clearing and grubbing includes trimming vegetation that is blocking Dolly Ridge Road eastbound drivers' view of the signal heads at the intersection of Gresham Drive.

2. Implement base signal timings. This does not include periodic monitoring of detection.

3. Contingency cost includes miscellaneous and/or unknown items that can not be quantified at the time this study was conducted.

4. Internal school circulation plan is not included in the Preliminary Engineering fee.

5. Right-of-Way and Utility Relocation were not included in this estimate; however, some improvements will require right-of-way acquisition and/or utility relocations.

6. The total estimated project cost was prepared for the 2019 planning year. This number should be increased to account for rising costs due to inflation should the improvements not be implemented in 2019.

NOTE: ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COST PROVIDED IS MADE ON THE BASIS OF ENGINEER'S EXPERIENCES AND QUALIFICATION AND REPRESENTS ENGINEER'S BEST JUDGMENT WITHIN THE INDUSTRY. ENGINEER DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL COST WILL NOT VARY FROM ENGINEER'S OPINION OF PROBABLE COST.